Project description:Pilocytic astrocytoma (PA) is a low-grade neoplasm frequently found in childhood. PA is characterized by slow growth and a relatively good prognosis. Genetic mechanisms such as activation of MAPK, BRAF gene deregulation and neurofibromatosis type 1 (NF1) syndrome have been associated with PA development. Epigenetic signature and miRNA expression profile are providing new insights about different types of tumor, including PAs. In the present study we evaluated global miRNA expression in 16 microdissected pediatric PA specimens, three NF1-associated PAs and 11 cerebral white matter (WM) samples by the microarray method. An additional cohort of 20 PAs was used to validate by qRT-PCR the expression of six miRNAs differentially expressed in the microarray data. Unsupervised hierarchical clustering analysis distinguished one cluster with nine PAs, including all NF1 cases and a second group consisting of the WM samples and seven PAs. Among 88 differentially expressed miRNAs between PAs and WM samples, the most underexpressed ones regulate classical pathways of tumorigenesis, while the most overexpressed miRNAs are related to pathways such as focal adhesion, P53 signaling pathway and gliomagenesis. The PAs/NF1 presented a subset of underexpressed miRNAs, which was also associated with known deregulated pathways in cancer such as cell cycle and hippo pathway. In summary, our data demonstrate that PA harbors at least two distinct miRNA signatures, including a subgroup of patients with NF1/PA lesions.
Project description:The Rift Valley Fever (RVF) is an arthropod-borne disease present in several countries of Africa and Middle East. It is caused by RVF virus which can infect both humans and animals. In humans, it leads to various manifestations including hepatitis, encephalitis and death, while in domestic animals it usually causes miscarriage in pregnant females and it is often fatal for the newborn. Not all people or animal infected by the virus present the same disease. Some patients exhibit unapparent or moderate febrile reactions, while others develop severe symptoms. This observation suggests that host genetic factors play a role in controlling the outcome of infection. In this work, we compare the response of two different inbred strains of mice, MBT/Pas and BALB/cByJ, to infection with RVF virus. These strains exhibit different profiles of susceptibility to RVF virus infection. Indeed, MBT/Pas mice rapidly develop high viraemia and die soon after infection, while BALB/cByJ mice have a lower viraemia and die later. Interestingly, mouse embryonic fibroblasts (MEFs) obtained from MBT/Pas foetuses allows higher viral production than BALB/cByJ MEFs. Keywords: expression profiling The experiment was designed to include ARN samples from MBT/Pas and BALB/cByJ MEFs infected with the Rift Valley Fever (RVF) virus, and their respective mock-infected controls; each one of those in triplicate. Therefore, we have used 12 different samples for the study, divided as follows: 3 samples of RVF virus-infected BALB/cByJ MEFs, 3 samples of mock-infected BALB/cByJ MEFs, 3 samples of RVF virus-infected MBT/Pas MEFs and 3 samples of mock-infected MBT/Pas MEFs. Each RNA was extracted from a different culture well.
Project description:RNA Polymerase II (RNAPII) termination for transcripts containing a polyadenylation signal (PAS) is thought to differ mechanistically from termination for PAS-independent RNAPII transcripts such as sn(o)RNAs. In a screen for factors required for PAS-dependent termination, we identified Sen1, a putative helicase known primarily for its role in PAS-independent termination. We show that Sen1 is required for termination on hundreds of protein-coding genes and suppresses cryptic transcription from nucleosome-free regions on a genomic scale. These effects often overlap with but are also often distinct from those caused by Nrd1 depletion, which also impacts termination of protein-coding and cryptic transcripts, including many genic antisense transcripts. Sen1 controls termination through its helicase activity and stimulates recruitment of factors previously implicated in both PAS-dependent (Rna14, Rat1) and PAS-independent (Nrd1) termination. Thus, RNAPII termination for both protein-coding genes and cryptic transcripts is dependent on multiple pathways.
Project description:Pilocytic astrocytomas (PAs) are the most common glioma in children. While many PAs; are slow growing or clinically indolent, others exhibit more aggressive features with tumor; recurrence and death. In order to identify genetic signatures that might predict PA clinical; behavior, we performed gene expression profiling on 41 primary PAs arising sporadically and in; patients with neurofibromatosis type 1 (NF1). While no expression signature was found that; could discriminate clinically-aggressive or recurrent tumors from more indolent cases, PAs; arising in patients with NF1 did exhibit a unique gene expression pattern. In addition, we; identified a gene expression signature that stratified PAs by location (supratentorial versus; infratentorial). Experiment Overall Design: 41 pilocytic astrocytoma samples were analyzed.
Project description:Alternative cleavage and polyadenylation (APA) generates diverse mRNA isoforms. We developed 3' region extraction and deep sequencing (3'READS) to address mispriming issues that commonly plague poly(A) site (pA) identification, and we used the method to comprehensively map pAs in the mouse genome. Thorough annotation of gene 3' ends revealed over 5,000 previously overlooked pAs (~8% of total) flanked by A-rich sequences, underscoring the necessity of using an accurate tool for pA mapping. About 79% of mRNA genes and 66% of long noncoding RNA genes undergo APA, but these two gene types have distinct usage patterns for pAs in introns and upstream exons. Quantitative analysis of APA isoforms by 3'READS indicated that promoter-distal pAs, regardless of intron or exon locations, become more abundant during embryonic development and cell differentiation and that upregulated isoforms have stronger pAs, suggesting global modulation of the 3' endM-bM-^@M-^Sprocessing activity in development and differentiation. 3'READS to map pAs in mouse genome
Project description:Pilocytic astrocytomas (PAs), WHO Grade I, are one of the most frequently occurring childhood brain tumors. We have used microarray comparative genomic hybridization (aCGH) to study copy number changes on chromosome 7 in a series of PAs (n=44). Keywords: Comparative Genomic Hybridization
Project description:Pilocytic astrocytomas (PAs), WHO Grade I, are one of the most frequently occurring childhood brain tumors. We have used microarray comparative genomic hybridization (aCGH) at 1Mb resolution to study copy number changes in a series of PAs (n=44). Keywords: Comparative Genomic Hybridization, aCGH
Project description:The tumor suppressor p53 is a transcription factor that coordinates the cellular response to DNA damage. Here we provide an integrated analysis of p53 genomic occupancy and p53-dependent gene regulation in the splenic B and non-B cell compartments of mice exposed to whole-body ionizing radiation, providing insight into general principles of p53 activity in vivo. In unstressed conditions, p53 bound few genomic targets; induction of p53 by ionizing radiation increased the number of p53 bound sites, leading to highly overlapping profiles in the different cell types. Comparison of these profiles with chromatin features in unstressed B cells revealed that, upon activation, p53 localized at active promoters, distal enhancers, and a smaller set of unmarked distal regions. At promoters, recognition of the canonical p53 motif as well as binding strength were associated with p53-dependent transcriptional activation, but not repression, indicating that the latter was most likely indirect. p53-activated targets constituted the core of a cell type-independent response, superimposed onto a cell type-specific program. Core response genes included most of the known p53-regulated genes, as well as many new ones. Our data represent a unique characterization of the p53-regulated response to ionizing radiation in vivo. Mapping p53 binding sites in the splenic B and non-B cell compartments of mice exposed to whole-body ionizing radiation
Project description:RNA Polymerase II (RNAPII) termination for transcripts containing a polyadenylation signal (PAS) is thought to differ mechanistically from termination for PAS-independent RNAPII transcripts such as sn(o)RNAs. In a screen for factors required for PAS-dependent termination, we identified Sen1, a putative helicase known primarily for its role in PAS-independent termination. We show that Sen1 is required for termination on hundreds of protein-coding genes and suppresses cryptic transcription from nucleosome-free regions on a genomic scale. These effects often overlap with but are also often distinct from those caused by Nrd1 depletion, which also impacts termination of protein-coding and cryptic transcripts, including many genic antisense transcripts. Sen1 controls termination through its helicase activity and stimulates recruitment of factors previously implicated in both PAS-dependent (Rna14, Rat1) and PAS-independent (Nrd1) termination. Thus, RNAPII termination for both protein-coding genes and cryptic transcripts is dependent on multiple pathways. The 2 RNAPII datasets were produced in duplicates and the Sen1 and Nrd1 datasets in triplicates (all IP/Input).
Project description:The pathophysiologic mechanisms driving tumorigenesis and invasion of sporadic pituitary macroadenomas (PAs) remain unknown. We hypothesized that alterations in DNA methylation are associated with PA invasion and histopathology subtype, and that genome-scale methylation analysis may complement current classification methods for sporadic PAs. Twenty-four surgically-resected sporadic PAs with varying histopathological subtypes were assigned dichotomized Knosp invasion scores and examined using genome-wide DNA methylation patterns and RNA sequencing.