Project description:Pancreatic ductal adenocarcinoma is aggressive disease with a dismal five-year survival of 5%. Gene expression profiling has been instrumental for subtype classification in cancer, highlighting fundamental differences in tumors at the molecular level. Over the last years, multiple genomics studies have led to the classification of PDAC into two major subtypes: classical and basal-type. The classical subtype expresses higher levels of endodermal lineage specifiers, including HNF4A, GATA6, FOXA2, FOXA3 than the basal-type. The basal-type confers a worse prognosis, raising the possibility that loss of these lineage specifiers might enhance the malignant potential of PDAC. We found that the lineage specifier HNF4a plays a key role in maintaining a transcriptional network that characterizes the classical subtype, restraining growth in different PDAC models. Additionally, we demonstrated that HNF4a controls PDAC cell identity and proliferation, and represses the expression of SIX family members, two mesodermal lineage specifiers highly expressed in basal-type.
Project description:Pancreatic ductal adenocarcinoma is aggressive disease with a dismal five-year survival of 5%. Gene expression profiling has been instrumental for subtype classification in cancer, highlighting fundamental differences in tumors at the molecular level. Over the last years, multiple genomics studies have led to the classification of PDAC into two major subtypes: classical and basal-type. The classical subtype expresses higher levels of endodermal lineage specifiers, including HNF4A, GATA6, FOXA2, FOXA3 than the basal-type. The basal-type confers a worse prognosis, raising the possibility that loss of these lineage specifiers might enhance the malignant potential of PDAC. We found that the lineage specifier HNF4a plays a key role in maintaining a transcriptional network that characterizes the classical subtype, restraining growth in different PDAC models. Additionally, we demonstrated that HNF4a controls PDAC cell identity and proliferation, and represses the expression of SIX family members, two mesodermal lineage specifiers highly expressed in basal-type.
Project description:Pancreatic ductal adenocarcinoma is an aggressive disease with a dismal five-year survival of 5%. Gene expression profiling has been instrumental for subtype classification in cancer, highlighting fundamental differences in tumors at the molecular level. Over the last years, multiple genomics studies have led to the classification of PDAC into two major subtypes: classical and basal-type. The classical subtype expresses higher levels of endodermal lineage specifiers, including HNF4A, GATA6, FOXA2, FOXA3 than the basal-type. The basal-type confers a worse prognosis, raising the possibility that loss of these lineage specifiers might enhance the malignant potential of PDAC. We found that the lineage specifier HNF4a plays a key role in maintaining a transcriptional network that characterizes the classical subtype, restraining growth in different PDAC models. Additionally, we demonstrated that HNF4a controls PDAC cell identity and proliferation, and represses the expression of SIX family members, two mesodermal lineage specifiers highly expressed in basal-type.
Project description:We analyzed the effect on HNF4A loss on Histone modifications (H3K4me1, H3K27ac) by ChIP-seq and CUT&Tag using control and HNF4A KO livers samples. We also examined chromatin accessibility by ATAC-seq in control and HNF4A KO livers. We also performed CUT&Tag and ATAC-seq of mouse fibroblast cells (NIH 3T3) treated with control or HNF4A expression vector.
Project description:The genome-wide binding sites of transcription factors provide insight into their regulatory function. We used chromatin immunoprecipitaition with high-throughput sequencing (ChIP-seq) to identify the genomic binding sites of HNF4A and GATA6 in OE19 cells.
Project description:ChIP-seqs of BMAL1, HNF4A, FOXA2, H3K4me1, and H3K27ac were profiled in mouse liver tissues upon Hnf4a or Bmal1 knockout. BMAL1, H3K4me1, and H3K27ac ChIP-seq were profiled in U2OS cells ectopically expressing HNF4A.
Project description:HNF4A mRNA cycles over the coure of 24 h. To understand whether the chromatin binding of the transcription factor is also rhythmic, we performed ChIP-seq for HNF4A using mouse liver samples of ZT4 and ZT16. By analysing this dataset, we conclude that HNF4A binds chromatin much more robustly during the evening ( at ZT16).