Project description:Background Trombidid mites have a unique lifecycle in which only the larval stage is ectoparasitic. In the superfamily Trombiculoidea (“chiggers”), the larvae feed preferentially on vertebrates, including humans. Species in the genus Leptotrombidium are vectors of a potentially fatal bacterial infection, scrub typhus, which affects 1 million people annually. Moreover, chiggers can cause pruritic dermatitis (trombiculiasis) in humans and domesticated animals. In the Trombidioidea (velvet mites), the larvae feed on other arthropods and are potential biological control agents for agricultural pests. Here, we present the first trombidid mites genomes, obtained both for a chigger, Leptotrombidium deliense, and for a velvet mite, Dinothrombium tinctorium. Results Sequencing was performed on the Illumina MiSeq platform. A 180 Mb draft assembly for D. tinctorium was generated from two paired-end and one mate-pair library using a single adult specimen. For L. deliense, a lower-coverage draft assembly (117 Mb) was obtained using pooled, engorged larvae with a single paired-end library. Remarkably, both genomes exhibited evidence of ancient lateral gene transfer from soil-derived bacteria or fungi. The transferred genes confer functions that are rare in animals, including terpene and carotenoid synthesis. Thirty-seven allergenic protein families were predicted in the L. deliense genome, of which nine were unique. Preliminary proteomic analyses identified several of these putative allergens in larvae. Conclusions Trombidid mite genomes appear to be more dynamic than those of other acariform mites. A priority for future research is to determine the biological function of terpene synthesis in this taxon and its potential for exploitation in disease control. Project was jointly supervised by Stuart Armstrong and Ben Makepeace.
Project description:Illumina MiSeq next generation sequencing chip was used to identify differentially expressed miRs by comparing peripheral blood mononuclear cell samples between OSA patients and healthy non-snorers.
Project description:miRNA profiles of astrocytes infected with Borrelia burgdorferi for 24 hours, 48 hours, and 24 hour uninfected controls were generated by deep sequencing, in duplicate, using Illumina MiSeq.
2017-02-01 | GSE85142 | GEO
Project description:the Illumina MiSeq sequencing on soil sample 2
Project description:Efforts to identify ccRNA by sequencing by gibson circularization after template-switching 5' RACE using a cRNA-end specific primer and subsequent sequencing by Illumina miSeq. Sequencing of wild-type A/WSN/1933 and a variant bearing the mutation T677A in the PB1 subunit.