Project description:Gut microbiota is an unignored target in maintaining intestinal homeostasis due to its regulatory effects on intestinal health through multiple mechanisms, including enhancing intestinal barriers, modulating microbial diversity, secreting various metabolites, etc. Bacteriocins produced by probiotics have been gradually proved vital for intestinal diseases intervention, however, the corresponding mechanisms have received less attention and the whole story of their regulative activities are hard to be fully uncovered. The two-peptide Plantaricin NC8 (PLNC8), coded by gene plnc8, is a bacteriocin ubiquitously produced by Lactobacillus plantarum, has been regarded as the potential vital bacteriocin for the anti-inflammatory effects of Lactobacillus plantarum. This study exploited CRISPR-cas9 and prokaryotic gene overexpression techniques to construct the plnc8 strains for the anti-inflammatory mechanism investigation. Based on the metagenomics, transcriptomics and metabolomics analysis, the anti-enteritis mechanism of PLNC8 systematically in DSS-induced enteritis models were comprehensively revealed. PLNC8 induced alterations in the composition of gut microbiota composition, promoting the alterations of multiple probiotics such as Eubacterium plexicaudatum, Doreasp.5-2, Enterococcus cecorum and Prevotella oulorum. Besides, various metabolites produced by the gut microbiota were influenced, and the key metabolites of xanthine, hypoxanthine, and L-histidine were regulated via purine and histidine metabolic pathways. These metabolites further inhibited p38 MAPK phosphorylation of enterocytes induced by DSS. Ultimately, the intestinal barrier repairment and anti- enteritis were achieved, proving the anti-enteritis effects of PLNC8 via microbe-metabolites-enterocyte axis.
Project description:Aging is associated with declining immunity and inflammation as well as alterations in the gut microbiome with a decrease of beneficial microbes and increase in pathogenic ones. The aim of this study was to investigate aging associated gut microbiome in relation to immunologic and metabolic profile in a non-human primate (NHP) model. 12 old (age>18 years) and 4 young (age 3-6 years) Rhesus macaques were included in this study. Immune cell subsets were characterized in PBMC by flow cytometry and plasma cytokines levels were determined by bead based multiplex cytokine analysis. Stool samples were collected by ileal loop and investigated for microbiome analysis by shotgun metagenomics. Serum, gut microbial lysate and microbe-free fecal extract were subjected to metabolomic analysis by mass-spectrometry. Our results showed that the old animals exhibited higher inflammatory biomarkers in plasma and lower CD4 T cells with altered distribution of naïve and memory T cell maturation subsets. The gut microbiome in old animals had higher abundance of Archaeal and Proteobacterial species and lower Firmicutes than the young. Significant enrichment of metabolites that contribute to inflammatory and cytotoxic pathways was observed in serum and feces of old animals compared to the young. We conclude that aging NHP undergo immunosenescence and age associated alterations in the gut microbiome that has a distinct metabolic profile.
Project description:Rationale: Recent studies suggest a potential link between gut bacterial microbiota dysbiosis and PAH, but the exact role of gut microbial communities, including bacteria, archaea, and fungi, in PAH remains unclear. Objectives: To investigate the role of gut microbiota dysbiosis in idiopathic pulmonary arterial hypertension (IPAH) and to assess the therapeutic potential of fecal microbiota transplantation (FMT) in modulating PAH progression. Methods: Using shotgun metagenomics, we analyzed gut microbial communities in IPAH patients and healthy controls. FMT was performed to transfer gut microbiota from IPAH patients or MCT-PAH rats to normal rats and from healthy rats to MCT-PAH rats. Hemodynamic measurements, echocardiography, histological examination, metabolomic and RNA-seq analysis were conducted to evaluate the effects of FMT on PAH phenotypes. Measurements and Main Results: Gut microbiota analysis revealed significant alterations in the bacterial, archaeal, and fungal communities in IPAH patients compared to healthy controls. FMT from IPAH patients induced PAH phenotypes in recipient rats. Conversely, FMT from healthy rats to IPAH rats significantly ameliorated PAH symptoms, restored gut microbiota composition, and normalized serum metabolite profiles. Specific microbial species were identified with high diagnostic potential for IPAH, improving predictive performance beyond individual or combined microbial communities. Conclusions: This study establishes a causal link between gut microbiota dysbiosis and IPAH and demonstrates the therapeutic potential of FMT in reversing PAH phenotypes. The findings highlight the critical role of bacterial, archaeal, and fungal communities in PAH pathogenesis and suggest that modulation of the gut microbiome could be a promising treatment strategy for PAH.
Project description:Approximately 15% of US adults have circulating levels of uric acid above its solubility limit, which is causally linked to the inflammatory disease gout. In most mammals, uric acid elimination is facilitated by the enzyme uricase. However, human uricase is a pseudogene, having been inactivated early in hominid evolution. Though it has long been known that a substantial amount of uric acid is eliminated in the gut, the role of the gut microbiota in hyperuricemia has not been studied. Here we identify a gene cluster, widely distributed in the gut microbiome, that encodes a pathway for uric acid degradation. Stable isotope tracing demonstrates that gut bacteria metabolize uric acid to xanthine or short chain fatty acids such as acetate, lactate and butyrate. Ablation of the microbiota in uricase-deficient mice causes profound hyperuricemia, and anaerobe-targeted antibiotics increase the risk of gout in humans. These data reveal a role for the gut microbiota in uric acid excretion and highlight the potential for microbiome-targeted therapeutics in hyperuricemia.
Project description:The mammalian gut harbors a diverse microbial community (gut microbiota) that mainly consists of bacteria. Their combined genomes (the microbiome) provide biochemical and metabolic functions that complement host physiology. Maintaining symbiosis seems to be a key requirement for health as dysbiosis is associated with the development of common diseases. Previous studies indicated that the microbiota and the hostM-bM-^@M-^Ys epithelium signal bidirectional inducing transcriptional responses to fine-tune and maintain symbiosis. However, little is known about the hostM-bM-^@M-^Ys responses to the microbiota along the length of the gut as earlier studies of gut microbial ecology mostly used either colonic or fecal samples. This is of importance as not only function and architecture of the gut varies along its length but also microbial distribution and diversity. Few recent studies have begun to investigate microbiota-induced host responses along the length of the gut. However, these reports used whole tissue samples and therefore do not allow drawing conclusions about specificity of the observed responses. Which cells in the intestinal tissue are responsible for the microbially induced response: epithelial, mesenchymal or immune cells? Where are the responding cells located? Furthermore, the gut microbiota has been implicated in epigenetic regulation of the hostM-bM-^@M-^Ys transcriptional profile. We used using extensive microarray analysis of laser capture microdissection (LCM) harvested ileal and colonic tip and crypt fractions from germ-free mice before and during the time course of colonization with a normal microbiota (on days 1, 3, 5 and 7) to investigate the microbiota-induced transcriptional responses and their kinetics in specific and well-defined cell populations of the hostM-bM-^@M-^Ys epithelium. Ileum and colon segments were dissected from germ-free 10-12 weeks old female C57Bl/6 mice and on day 1, 3, 5 and 7 after colonization, washed and frozen as OCT blocks. Cryosections were prepared from these OCT blocks and tip/crypt fractions isolated using laser capture microdissection. To investigate the microbiota-induced transcriptional responses specific for specific subpopulations of intestinal epithelial cells and their kinetics, tip and crypt fractions of ileal and colonic epithelium of germ-free 10-12 weeks old female C57Bl/6 mice before and during the time course of colonization with a normal microbiota (on days 1, 3, 5 and 7) were harvested using laser capture microdissection and probed in an extensive microarray analysis.
Project description:Many previous studies had revealed that gastrointestinal microbiome is changed compositionally and ecologically in patients with colorectal cancer comparing with healthy population. These finding provide us with a new sight to take advantage of gut microbiota. The current study aims to explore new potential biomarkers for early screening and prognostic prediction of colorectal cancer and colorectal polyps by analyzing metagenomics and metabolomics of gut microbiota.