Project description:Transcriptome comparison of Bacillus subtilis Natto under sliding permissive (0.7% agar) and restrictive (1.5% agar or spo0A mutant strain) conditions.
Project description:Investigation of the kinetics of whole genome gene expression level changes in Bacillus subtilis NDmed strain during formation of submerged biofilm and pellicle. The Bacillus subtilis NDmed strain analyzed in this study is able to form thick and highly structured submerged biofilms as described in Bridier et al., (2011) The Spatial Architecture of Bacillus subtilis Biofilms Deciphered Using a Surface-Associated Model and In Situ Imaging. PLoS ONE 6(1):e16177.
Project description:Identification of the specific WalR (YycF) binding regions on the B. subtilis chromosome during exponential and phosphate starvation growth phases. The data serves to extend the WalRK regulon in Bacillus subtilis and its role in cell wall metabolism, as well as implying a role in several other cellular processes.
Project description:The natural biotope of Bacillus subtilis is the upper layer of soil where it grows as a biofilm. To mimic this physiological development and study the impact of nanoparticles during the formation of a biofilm in a contaminated soil, we have studied the proteomic response of the ancestral strain Bacillus subtilis 3610, which is able to form biofilm contrary to the 168 laboratory strain. The bacteria were grown on soft agar plates containing n-ZnO, n-TiO2 or ZnSO4 metal ion.
Project description:In this study two genome-reduced Bacillus subtilis strains lacking about 36% of dispensable genetic information were constructed using a markerless and scarless deletion method. In order to analyze the consequences of the deletions for the bacteria, a multi-omics characterization of the reference strain Δ6 (Westers et al., 2003; PMID 12949151) and the two deletion strains was carried out. Bacteria were cultivated in complex medium supplemented with glucose, and samples of the same cultures were subjected to metabolome, proteome, and transcriptome analyses.These revealed a massive re-organization of metabolism as well as substantial changes in the transcriptome and the proteome.
Project description:Transcriptional response of Bacillus subtilis KS002 to targocil Strain KS002 (Bacillus subtilis PY79 M-NM-^TtagGHBs::cat, amyE::Phyperspank tarGHSa spc) is a targocil sensitive B. subtilis strain, with TarGH from Staphylococcus aureus as the only WTA exporter, IPTG dependent (Schirner, Stone and Walker, ACS Chem Bio 2011). Strain KS002 was treated with or without targocil for 30 min. Each experiment was conducted three times using three independent total RNA preparations (biological triplicates). For each paried comparison, one sample was labeled with Alexa Fluor 555 and the other was with Alexa Fluor 647. For each comparison, one replicate was performed with dyeswap with the same RNA.
Project description:Bacillus subtilis is exposed to a wide range of transitory stress and starvation conditions. Here we investigate the expression changes observed in the B. subtilis wild type strain 168 and its isogenic sigB mutant(BSM29) with respect to each stress condition tested.
Project description:Transcriptomic analysis of Bacillus subtilis hfq mutant in exponential phase of growth. Wild-type strain and hfq mutant cells in exponentially growth phase were subjected to tiling array gene expression analysis. RNA-binding protein Hfq is a key component of the adaptive responses of many proteobacterial species. In these organisms, the importance of Hfq largely stems from its participation to regulatory mechanisms involving small non-coding RNAs. In contrast, the function of Hfq in Gram-positive bacteria has remained elusive. Hfq does not appear to influence B.subtilis RNA patterns during the exponential phase to any significant extent, at least in cells grown in rich medium. This data set contains 4 samples. Expression profiles of Bacillus subtilis prototype strain (BSB1, a tryptophan-prototrophic derivative 168 strain) and a ?hfq mutant were examined at OD ~0.5 in LB medium. Two biological replicates were analyzed.