Project description:Investigation of whole genome gene expression level changes in sporulating Bacillus subtilis 168 delta-prpE mutant, compared to the wild-type strain. The mutation engineered into this strain results in impaired germination of spores.
Project description:Investigation of whole genome gene expression level changes in sporulating Bacillus subtilis 168 delta-prpE mutant, compared to the wild-type strain. The mutation engineered into this strain results in impaired germination of spores. A six chip study using total RNA extracted from three separate wild-type cultures of sporulating Bacillus subtilis 168 and three separate cultures of sporulating mutant strain, Bacillus subtilis 168 delta-prpE, in which prpE (yjbP BSU11630) gene coding for a protein phosphatase is deleted entirely. Each chip consists of four fields able to measure the expression level of 4,104 genes from Bacillus subtilis subsp. subtilis strain 168 NC_000964 with eight 60-mer probe pairs (PM/MM) per gene, with two-fold technical redundancy.
Project description:Investigation of the kinetics of whole genome gene expression level changes in Bacillus subtilis NDmed strain during formation of submerged biofilm and pellicle. The Bacillus subtilis NDmed strain analyzed in this study is able to form thick and highly structured submerged biofilms as described in Bridier et al., (2011) The Spatial Architecture of Bacillus subtilis Biofilms Deciphered Using a Surface-Associated Model and In Situ Imaging. PLoS ONE 6(1):e16177.
Project description:Transcriptome comparison of Bacillus subtilis Natto under sliding permissive (0.7% agar) and restrictive (1.5% agar or spo0A mutant strain) conditions.
Project description:In this study two genome-reduced Bacillus subtilis strains lacking about 36% of dispensable genetic information were constructed using a markerless and scarless deletion method. In order to analyze the consequences of the deletions for the bacteria, a multi-omics characterization of the reference strain Δ6 (Westers et al., 2003; PMID 12949151) and the two deletion strains was carried out. Bacteria were cultivated in complex medium supplemented with glucose, and samples of the same cultures were subjected to metabolome, proteome, and transcriptome analyses.These revealed a massive re-organization of metabolism as well as substantial changes in the transcriptome and the proteome.
Project description:Identification of the specific WalR (YycF) binding regions on the B. subtilis chromosome during exponential and phosphate starvation growth phases. The data serves to extend the WalRK regulon in Bacillus subtilis and its role in cell wall metabolism, as well as implying a role in several other cellular processes.
Project description:The natural biotope of Bacillus subtilis is the upper layer of soil where it grows as a biofilm. To mimic this physiological development and study the impact of nanoparticles during the formation of a biofilm in a contaminated soil, we have studied the proteomic response of the ancestral strain Bacillus subtilis 3610, which is able to form biofilm contrary to the 168 laboratory strain. The bacteria were grown on soft agar plates containing n-ZnO, n-TiO2 or ZnSO4 metal ion.
Project description:Transcriptional profiling of C. elegans young adult worms cultured on non-pathogenic Bacillus subtilis strain 67 versus age-matched worms cultured on the control lab food E. coli OP50. The goal was to identify genes regulated in response to differences in diet, which potentially confer immunity to later exposures to pathogenic Bacillus thuringiensis DB27.