Project description:A prototype oligonucleotide microarray was designed to detect and identify viable bacterial species with the potential to grow of common beer spoilage microorganisms from the genera Lactobacillus, Megasphaera, Pediococcus and Pectinatus. Probes targeted the intergenic spacer regions (ISR) between 16S and 23S rRNA, which were amplified in a combination of reverse transcriptase (RT) and polymerase chain reaction (PCR) prior to hybridization. This method allows the detection and discrimination of single bacterial species in a complex sample. Furthermore, microarrays using oligonucleotide probes targeting the ISR allow the distinction between viable bacteria with the potential to grow and non-growing bacteria. The results demonstrate the feasibility of oligonucleotide microarrays as a contamination control in food industry for the detection and identification of spoilage microorganisms within mixed population. Keywords: microarray, oligonucleotide, species-specific, detection, beer spoilage bacteria
2007-05-23 | GSE7840 | GEO
Project description:The biological deterioration trend of cultural heritage sites under the industrial process
Project description:Background: Microorganisms are the major cause of food spoilage during storage, processing and distribution. Pseudomonas fluorescens is a typical spoilage bacterium that contributes to a large extent to the spoilage process of proteinaceous food. RpoS is considered an important global regulator involved in stress survival and virulence in many pathogens. Our previous work revealed that RpoS contributed to the spoilage activities of P. fluorescens by regulating resistance to different stress conditions, extracellular acylated homoserine lactone (AHL) levels, extracellular protease and total volatile basic nitrogen (TVB-N) production. However, RpoS-dependent genes in P. fluorescens remained undefined. Results: RNA-seq transcriptomics analysis combined with quantitative proteomics analysis basing on multiplexed isobaric tandem mass tag (TMT) labeling was performed for the P. fluorescens wild-type strain UK4 and its derivative carrying a rpoS mutation. A total of 375 differentially expressed genes (DEGs) and 212 differentially expressed proteins (DEPs) were identified in these two backgrounds. The DGEs were further verified by qRT-PCR tests, and the genes directly regulated by RpoS were confirmed by 5’-RACE-PCR sequencing. The combining transcriptome and proteome analysis revealed a role of this regulator in several cellular processes, including polysaccharide metabolism, intracellular secretion and extracellular structures, cell well biogenesis, stress responses, ammonia and biogenic amine production, which may contribute to biofilm formation, stress resistance and spoilage activities of P. fluorescens. Moreover, in this work we indeed observed that RpoS contributed to the production of the macrocolony biofilm’s matrix.
Project description:The purpose of this study was to explore the mechanism of aerobic decay of whole-plant corn silage and the effect of Neolamarckia cadamba essential oil on aerobic stability of whole-plant corn silage. Firstly, the dynamic changes of temperature, microbial community and metabolite content after aerobic exposure of whole-plant corn silage were determined, and the main microbial species and mechanism leading to aerobic spoilage of whole-plant corn silage were analyzed. The N. cadamba essential oil was extracted from fresh N. cadamba leaves by steam distillation, and the minimal inhibitory concentration, antibacterial stability and bacteriostatic mechanism of N. cadamba essential oil against undesirable microorganisms in whole-plant corn silage were determined. According to the minimum inhibitory concentration of N. cadamba essential oil on undesirable microorganisms in silage, N. cadamba essential oil was added to whole-plant corn silage to explore the effect of N. cadamba essential oil on the aerobic stability of whole-plant corn silage.
Project description:Here we present genome-wide genotyping data of 70 human samples from Europe (Balto-Slavic speakers, Greeks) that are used in addition to public data in a study of genetic heritage of the Balto-Slavic populations.
Project description:The overall objective of the heritage project is to study the role of the genotype in cardiovascular,metabolic and hormonal responses to aerobic exercise training and the contribution of regular exercise to changes in several cardiovascular disease and diabetes risk factors. PLEASE NOTE THE POST-TRAINING GENE CHIP FILES HAVE NEVER BEEN RELEASED ON GEO. PLEASE ALSO NOTE THAT DUE TO THE OUTDATED INSULIN ASSAY UTILISED IN THE HERITAGE STUDY, THE INSULIN DATA WAS NOT COMPARABLE WITH ANY MORE RECENT MODERN STUDIES.