Project description:Paleofeces are an important source of information to study the evolution of dietary habits and human health. The UNESCO World Heritage region of Hallstatt-Dachstein/Salzkammergut is one of Europe’s oldest cultural and industrial landscapes; its underground salt mines dating back at least to the 14th century BC are one of the few archaeological sites where paleofeces are well preserved. The high salt concentrations and the constant annual temperature at around 8°C inside the isolated Hallstatt mines have perfectly preserved organic archaeological artefacts (e.g. paleofeces, clothing, mining tools) that provide unique insights into the daily life of a progressive community in Hallstatt. Here we subjected human paleofeces dated from the Bronze Age to early Modern Times to an in-depth microscopic, metagenomic and proteomic analysis. This allowed us to reconstruct the diet of the former population and gain insights into their ancient gut microbiome composition. Our dietary survey identified bran and glumes of different cereals as one of the most prevalent plant fragments. This highly fibrous, carbohydrate-rich diet was supplemented with proteins from broad beans and occasionally with fruits, nuts, or animal food. Linked to these traditional dietary habits all ancient miners up to the early Modern times have gut microbiome structures akin to modern non-Westernized individuals which may indicate a shift in the gut community composition of modern Westernized populations due to quite recent dietary and lifestyle changes. When we extended our microbial survey to fungi present in the paleofeces, we observed in one of the Iron Age samples a high abundance of Penicillium roqueforti and Saccharomyces cerevisiae DNA. Genome-wide analysis indicates that both fungi were involved in food fermentation and provide the first molecular evidence for blue cheese and beer consumption during Iron Age Europe.
Project description:This clinical trial hypothesize that Gut Microbiota (bacteria, viruses, fungi)play a major role in the occurrence and progression of many chronic gastrointestinal diseases like Irritable Bowel Syndrome, Inflammatory Bowel Diseases and Colo-Rectal Cancer.
Hence, aims to study the spectrum of such microbiota in these patients as compared to normal subjects, by utilizing metagenomic techniques rather than cultural methods.
Project description:Here we present genome-wide genotyping data of 70 human samples from Europe (Balto-Slavic speakers, Greeks) that are used in addition to public data in a study of genetic heritage of the Balto-Slavic populations.
Project description:The overall objective of the heritage project is to study the role of the genotype in cardiovascular,metabolic and hormonal responses to aerobic exercise training and the contribution of regular exercise to changes in several cardiovascular disease and diabetes risk factors. PLEASE NOTE THE POST-TRAINING GENE CHIP FILES HAVE NEVER BEEN RELEASED ON GEO. PLEASE ALSO NOTE THAT DUE TO THE OUTDATED INSULIN ASSAY UTILISED IN THE HERITAGE STUDY, THE INSULIN DATA WAS NOT COMPARABLE WITH ANY MORE RECENT MODERN STUDIES.
Project description:Chevallier is a heritage english landrace of barley first planted in 1820 while Tipple is modern cultivar of barley released in 2004. Pseudomonas strains were isolated from the rhizospheres of the two varieties and 22 and 20 of the most phylogenetically distinct ones were sequenced to find out the difference in genotypes preferentially selected in the rhizospheres of the two cultivars.
Project description:Undertaking the conservation of artworks informed by the results of molecular analyses has gained growing importance over the last decades, and today it can take advantage of state-of-the-art analytical techniques, such as mass spectrometry-based proteomics. Protein-based binders are among the most common organic materials used in artworks, having been used in their production for centuries. However, the applications of proteomics to these materials are still limited. In this work, a palaeoproteomic workflow was successfully tested on paint reconstructions, and subsequently applied to micro-samples from a 15th-century panel painting, attributed to the workshop of Sandro Botticelli. This method allowed the confident identification of the protein-based binders and their biological origin, as well as the discrimination of the binder used in the ground and paint layers of the painting. These results show that the approach is accurate, highly sensitive, and broadly applicable in the cultural heritage field, due to the limited amount of starting material required. Accordingly, a set of guidelines are suggested, covering the main steps of the data analysis and interpretation of protein sequencing results, optimised for artworks.