Project description:Skin is the largest organ in the body and serves important barrier, regulatory, and sensory functions. Like other tissues, skin is subject to temporal fluctuations in physiological responses under both homeostatic and stressed states. To gain insight into these fluctuations, we investigated the role of the circadian clock in the transcriptional regulation of skin The purpose of this study was to gain insight into the evolutionarily-conserved rhythmic patterns of the circadian transcriptome in human skin and how it relates to published transcriptomes from other human tissues.
Project description:Skin is the largest organ in the body and serves important barrier, regulatory, and sensory functions. Like other tissues, skin is subject to temporal fluctuations in physiological responses under both homeostatic and stressed states. To gain insight into these fluctuations, we investigated the role of the circadian clock in the transcriptional regulation of human epidermal samples collected in a time-ordered fashion. We also determined whether this circadian patterning could be applied to unordered (i.e., randomly collected) human epidermal samples. The purpose of this study was to gain insight into the evolutionarily-conserved rhythmic patterns of the circadian transcriptome in human skin and how it relates to published transcriptomes from other human tissues.
Project description:Identification of cyclical expressed coding and non-coding genes during the circadian rhythm in NIH3T3 cells. NIH3T3 cells were synchronized for their circadian rhythm and RNA sequencing were performed at several time points along the rhythm. This data was used to identify cyclical expressed genes as well as long intergenic non-coding RNAs.
Project description:Skin is the largest organ in the body and serves important barrier, regulatory, and sensory functions. Like other tissues, skin is subject to temporal fluctuations in physiological responses under both homeostatic and stressed states. To gain insight into these fluctuations, we investigated the role of the circadian clock in the transcriptional regulation of skin The purpose of this study was to gain insight into the evolutionarily-conserved rhythmic patterns of the circadian transcriptome in human skin and how it relates to published transcriptomes from other human tissues.
Project description:Identification of cyclical expressed coding and non-coding genes during the circadian rhythm in NIH3T3 cells. NIH3T3 cells were synchronized for their circadian rhythm and RNA sequencing were performed at several time points along the rhythm. This data was used to identify cyclical expressed genes as well as long intergenic non-coding RNAs. NIH3T3 cells were synchronized with 100 nM Dexamethasone for 2 hours, then medium was changed to normal culture medium (0h). Every 4 hours cells were harvested, RNA isolated and RNAseq performed.