Project description:To identify novel mechanisms of acquired resistance to ALK inhibitors, we established in vitro models of acquired resistance to ceritinib using H3122 cell. In this study, we examined genome-wide DNA methylation changes during acquired resistance to ceritinib. We also examined the heterogeneity of parental and resistant cells using single cell RNA--seq.
Project description:Treatment with ALK tyrosine kinase inhibitors often elicits profound initial antitumor responses in ALK fusion-positive patients with lung adenocarcinoma. However, patients invariably develop acquired resistance to ALK inhibitors. In this study, we aimed to identify molecular events that limit the response to ALK inhibition using genetic and epigenetic approaches. To identify novel mechanisms of acquired resistance to ALK inhibitors, we established in vitro models of acquired resistance to ceritinib using H3122 cell. For in vitro model, H3122 parental cells, ceritinib-treated resistant cells, and non-resistant cells that combinely treated with certinib and panobinostat were used for ChIP-seq analysis.
Project description:To identify novel mechanisms of acquired resistance to ALK inhibitors, we established in vitro models of acquired resistance to ceritinib using H3122 cell. In this study, we examined genome-wide DNA methylation changes during acquired resistance to ceritinib. We also examined the heterogeneity of parental and resistant cells using single cell RNA--seq.
Project description:Treatment with ALK tyrosine kinase inhibitors often elicits profound initial antitumor responses in ALK fusion-positive patients with lung adenocarcinoma. However, patients invariably develop acquired resistance to ALK inhibitors. In this study, we aimed to identify molecular events that limit the durable response to ALK inhibition using genetic and epigenetic approaches. To identify novel mechanisms of acquired resistance to ALK inhibitors, we established in vivo and in vitro models of acquired resistance to ceritinib and crizotinib using H3122 and H2228 cells. For in vivo model, mice with established H3122-derived tumors were treated with four doses of ceritinib (50mg/kg, 75mg/kg, 87.5mg/kg, 100mg/kg) to derive ceritinib-resistant tumors.
Project description:Treatment with ALK tyrosine kinase inhibitors often elicits profound initial antitumor responses in ALK fusion-positive patients with lung adenocarcinoma. However, patients invariably develop acquired resistance to ALK inhibitors. In this study, we aimed to identify molecular events that limit the durable response to ALK inhibition using genetic and epigenetic approaches. To identify novel mechanisms of acquired resistance to ALK inhibitors, we established in vivo and in vitro models of acquired resistance to ceritinib and crizotinib using H3122 and H2228 cells. For in vivo model, mice with established H3122-derived tumors were treated with four doses of ceritinib (control, 75mg/kg, 87.5mg/kg, 100mg/kg) to derive ceritinib-resistant tumors.
Project description:Treatment with ALK tyrosine kinase inhibitors often elicits profound initial antitumor responses in ALK fusion-positive patients with lung adenocarcinoma. However, patients invariably develop acquired resistance to ALK inhibitors. In this study, we aimed to identify molecular events that limit the response to ALK inhibition using genetic and epigenetic approaches. To identify novel mechanisms of acquired resistance to ALK inhibitors, we established in vitro models of acquired resistance to ceritinib using H3122 cell. For in vitro model, H3122 parental cells, ceritinib-treated resistant cells, and non-resistant cells that combinely treated with certinib and panobinostat were used for MBD-seq based methylation profiling.
Project description:Treatment with ALK tyrosine kinase inhibitors often elicits profound initial antitumor responses in ALK fusion-positive patients with lung adenocarcinoma. However, patients invariably develop acquired resistance to ALK inhibitors. In this study, we aimed to identify molecular events that limit the response to ALK inhibition using genetic and epigenetic approaches. To identify novel mechanisms of acquired resistance to ALK inhibitors, we established in vitro models of acquired resistance to ceritinib using H3122 cell. For in vitro model, H3122 parental cells, ceritinib-treated resistant cells, and non-resistant cells that combinely treated with certinib and panobinostat were used for small RNA-seq based miRNA expression profiling.
Project description:Treatment with ALK tyrosine kinase inhibitors often elicits profound initial antitumor responses in ALK fusion-positive patients with lung adenocarcinoma. However, patients invariably develop acquired resistance to ALK inhibitors. In this study, we aimed to identify molecular events that limit the response to ALK inhibition using genetic and epigenetic approaches. To identify novel mechanisms of acquired resistance to ALK inhibitors, we established in vitro models of acquired resistance to ceritinib using H3122 cell. For in vitro model, H3122 parental cells, ceritinib-treated resistant cells, and non-resistant cells that combinely treated with certinib and panobinostat were used for RNA-seq based gene expression profiling.
Project description:Treatment with ALK tyrosine kinase inhibitors often elicits profound initial antitumor responses in ALK fusion-positive patients with lung adenocarcinoma. However, patients invariably develop acquired resistance to ALK inhibitors. In this study, we aimed to identify molecular events that limit the response to ALK inhibition using genetic and epigenetic approaches. To identify novel mechanisms of acquired resistance to ALK inhibitors, we established in vitro models of acquired resistance to ceritinib using H3122 cell. For in vitro model, H3122 parental cells, ceritinib-treated resistant cells, and non-resistant cells that combinely treated with certinib and panobinostat were used for RNA-seq based gene expression profiling.