Project description:<p>This project explores the nature of the human intestinal microbiome in healthy children and children with recurrent abdominal pain. The overall goal is to obtain a robust knowledge-base of the intestinal microbiome in children without evidence of pain or gastrointestinal disease, children with functional abdominal pain, and children with abdominal pain and changes in bowel habits (irritable bowel syndrome). Multiple strategies have been deployed to navigate and understand the nature of the intestinal microbiome in childhood. These strategies include 454 pyrosequencing-based strategies to sequence 16S rRNA genes and understand the detailed composition of microbes in healthy and disease groups. Microarray-based hybridization with the PhyloChip and quantitative real-time PCR (qPCR) probes are being applied as complementary strategies to gain an understanding of the intestinal microbiome from various perspectives. Data collected and analyzed during the HMP UH2 and UH3 Demo project, from a set of healthy and IBS children may enable the identification of core microbiomes in children in addition to variable components that may distinguish healthy from diseased pediatric states. We are currently analyzing the dataset for the presence of disease-specific signatures in the human microbiome, and correlating these microbial signatures with pediatric health or IBS disease status. This study explores the nature of core and variable human microbiomes in pre-adolescent healthy children and children with recurrent abdominal pain.</p>
Project description:<p>This project explores the nature of the human intestinal microbiome in healthy children and children with recurrent abdominal pain. The overall goal is to obtain a robust knowledge-base of the intestinal microbiome in children without evidence of pain or gastrointestinal disease, children with functional abdominal pain, and children with abdominal pain and changes in bowel habits (irritable bowel syndrome). Multiple strategies have been deployed to navigate and understand the nature of the intestinal microbiome in childhood. These strategies include 454 pyrosequencing-based strategies to sequence 16S rRNA genes and understand the detailed composition of microbes in healthy and disease groups. Microarray-based hybridization with the PhyloChip and quantitative real-time PCR (qPCR) probes are being applied as complementary strategies to gain an understanding of the intestinal microbiome from various perspectives. Data collected and analyzed during the HMP UH2 and UH3 Demo project, from a set of healthy and IBS children may enable the identification of core microbiomes in children in addition to variable components that may distinguish healthy from diseased pediatric states. We are currently analyzing the dataset for the presence of disease-specific signatures in the human microbiome, and correlating these microbial signatures with pediatric health or IBS disease status. This study explores the nature of core and variable human microbiomes in pre-adolescent healthy children and children with recurrent abdominal pain.</p>
Project description:We endeavored to identify objective blood biomarkers for pain, a subjective sensation with a biological basis, using a stepwise discovery, prioritization, validation, and testing in independent cohorts design. We studied psychiatric patients, a high risk group for co-morbid pain disorders and increased perception of pain. For discovery, we used a powerful withinsubject longitudinal design. We were successful in identifying blood gene expression biomarkers that were predictive of pain state, and of future emergency department (ED) visits for pain, more so when personalized by gender and diagnosis.
Project description:Asthma and postinfectious bronchiolitis obliterans (PIBO) are chronic lung diseases characterized by recurrent episodes of wheezing. Mycoplasma, adenovirus, and respiratory syncytial virus infections can trigger both asthma and PIBO. These two diseases have common etiologic mechanisms that cause airway epithelial injury. They are often difficult to differentiate clinically in preschool children because both are exacerbated by viral infections and respond similarly to steroids and β2 agonists. PIBO, which is occasionally observed in children, is diagnosed through characteristic findings of air trapping on computed tomography or in biopsy samples of lung tissue. However, researchers have not clearly identified the specific blood markers that can distinguish these diseases or the differences in the mechanisms of development. We performed proteomic analysis of plasma to identify specific biomarkers that can be helpful in differentiating asthma from PIBO. This study discovered plasma biomarker candidates by measuring plasma proteome sequential window acquisition of all theoretical mass spectra (SWATH-MS) and included 30 healthy children, 18 with asthma and 15 with PIBO. was used to measure proteins in plasma samples. We identified and quantified 354 proteins across all 63 samples in the SWATH-MS analysis.