Ontology highlight
ABSTRACT: This project explores the nature of the human intestinal microbiome in healthy children and children with recurrent abdominal pain. The overall goal is to obtain a robust knowledge-base of the intestinal microbiome in children without evidence of pain or gastrointestinal disease, children with functional abdominal pain, and children with abdominal pain and changes in bowel habits (irritable bowel syndrome). Multiple strategies have been deployed to navigate and understand the nature of the intestinal microbiome in childhood. These strategies include 454 pyrosequencing-based strategies to sequence 16S rRNA genes and understand the detailed composition of microbes in healthy and disease groups. Microarray-based hybridization with the PhyloChip and quantitative real-time PCR (qPCR) probes are being applied as complementary strategies to gain an understanding of the intestinal microbiome from various perspectives. Data collected and analyzed during the HMP UH2 and UH3 Demo project, from a set of healthy and IBS children may enable the identification of core microbiomes in children in addition to variable components that may distinguish healthy from diseased pediatric states. We are currently analyzing the dataset for the presence of disease-specific signatures in the human microbiome, and correlating these microbial signatures with pediatric health or IBS disease status. This study explores the nature of core and variable human microbiomes in pre-adolescent healthy children and children with recurrent abdominal pain.
PROVIDER: phs000265.v3.p1 | EGA |
REPOSITORIES: EGA
Gastroenterology 20110708 5
<h4>Background & aims</h4>The intestinal microbiomes of healthy children and pediatric patients with irritable bowel syndrome (IBS) are not well defined. Studies in adults have indicated that the gastrointestinal microbiota could be involved in IBS.<h4>Methods</h4>We analyzed 71 samples from 22 children with IBS (pediatric Rome III criteria) and 22 healthy children, ages 7-12 years, by 16S ribosomal RNA gene sequencing, with an average of 54,287 reads/stool sample (average 454 read length = 503 ...[more]