Project description:The genetic structure of the indigenous hunter-gatherer peoples of Southern Africa, the oldest known lineage of modern man, holds an important key to understanding humanity's early history. Previously sequenced human genomes have been limited to recently diverged populations. Here we present the first complete genome sequences of an indigenous hunter-gatherer from the Kalahari Desert and of a Bantu from Southern Africa, as well as protein-coding regions from an additional three hunter-gatherers from disparate regions of the Kalahari. We characterize the extent of whole-genome and exome diversity among the five men, reporting 1.3 million novel DNA differences genome-wide, and 13,146 novel amino-acid variants. These data allow genetic relationships among Southern African foragers and neighboring agriculturalists to be traced more accurately than was previously possible. Adding the described variants to current databases will facilitate inclusion of Southern Africans in medical research efforts.
Project description:The genetic structure of the indigenous hunter-gatherer peoples of Southern Africa, the oldest known lineage of modern man, holds an important key to understanding humanity's early history. Previously sequenced human genomes have been limited to recently diverged populations. Here we present the first complete genome sequences of an indigenous hunter-gatherer from the Kalahari Desert and of a Bantu from Southern Africa, as well as protein-coding regions from an additional three hunter-gatherers from disparate regions of the Kalahari. We characterize the extent of whole-genome and exome diversity among the five men, reporting 1.3 million novel DNA differences genome-wide, and 13,146 novel amino-acid variants. These data allow genetic relationships among Southern African foragers and neighboring agriculturalists to be traced more accurately than was previously possible. Adding the described variants to current databases will facilitate inclusion of Southern Africans in medical research efforts. Copy number differences between NA18507 and KB1 were predicted from the depth of whole-genome shotgun sequence reads. These predictions were then validated using array-CGH using a a genome-wide design as well as a custom design targeted at specific regions of copy number difference
Project description:The shift from a hunter-gatherer (HG) to an agricultural (AG) mode of subsistence is believed to have been associated with profound changes in the burden and diversity of pathogens across human populations. Yet, the extent to which the advent of agriculture impacted the evolution of the human immune system remains unknown. Here we present a comparative study of variation in the transcriptional responses of peripheral blood mononuclear cells (PBMCs) to bacterial and viral stimuli between the Batwa, a rainforest hunter-gatherer, and the Bakiga, an agriculturalist population from Central Africa. We observed increased divergence between hunter-gatherers and farmers in the transcriptional response to viruses compared to that for bacterial stimuli. We demonstrate that a significant fraction of these transcriptional differences are under genetic control, and we show that positive natural selection has helped to shape population differences in immune regulation. Unexpectedly, we found stronger signatures of recent natural selection in the rainforest hunter-gatherers, which argues against the popularized notion that shifts in pathogen exposure due to the advent of agriculture imposed radically heightened selective pressures in agriculturalist populations.
Project description:We utilized ChIP Seq to examine the the genomic localization of the increase in H3K9 trimethylation we had previously observed in the hippocampus as a consequence of acute restraint stress in rats (Hunter et. al PNAS 2009).
2012-11-02 | GSE41217 | GEO
Project description:First report of rosa multiflora cryptic virus (RMCV)
| PRJNA1031361 | ENA
Project description:First report of viruses infecting ornamentals in Australia
| PRJNA997749 | ENA
Project description:First report of Spirabiliibacterium mucosae genome from India
Project description:Microarray based CGH was conducted over a group of 29 strains of S. Enteritidis spanning different epidemiological periods in Uruguay, plus 6 other S. Enteritidis strains isolated from distant geographical regions. We also included 9 Salmonella enterica strains of other serovars isolated in Uruguay. A S. Enteritidis dispensable genome of 233 chromosomal genes and high extent of variation in virulence plasmid was found. Strains isolated before the epidemic show the highest genomic differences as compared with the PT4 reference strain. Comparison with the gene content of other serovars demonstrate extensive horizontal gene transfer between circulating strains beyond serovar definition. Our results show that the epidemic of S Enteritidis in Uruguay was produced by the introduction of strains closely related to PT4, and corroborate the extensive genetic homogeneity among S. Enteritidis isolates worldwide. Phage SE14 emerges as the only specific region for S. Enteritidis. Genetic differences detected in pre-epidemic strains, mainly associated with the absence of phage SE20, suggest that genetic features encoded in this phage may be related to particular epidemiological behavior.