Natural selection has contributed to functional immune response differences between human hunter-gatherers and agriculturalists
Ontology highlight
ABSTRACT: The shift from a hunter-gatherer (HG) to an agricultural (AG) mode of subsistence is believed to have been associated with profound changes in the burden and diversity of pathogens across human populations. Yet, the extent to which the advent of agriculture impacted the evolution of the human immune system remains unknown. Here we present a comparative study of variation in the transcriptional responses of peripheral blood mononuclear cells (PBMCs) to bacterial and viral stimuli between the Batwa, a rainforest hunter-gatherer, and the Bakiga, an agriculturalist population from Central Africa. We observed increased divergence between hunter-gatherers and farmers in the transcriptional response to viruses compared to that for bacterial stimuli. We demonstrate that a significant fraction of these transcriptional differences are under genetic control, and we show that positive natural selection has helped to shape population differences in immune regulation. Unexpectedly, we found stronger signatures of recent natural selection in the rainforest hunter-gatherers, which argues against the popularized notion that shifts in pathogen exposure due to the advent of agriculture imposed radically heightened selective pressures in agriculturalist populations.
ORGANISM(S): Homo sapiens
PROVIDER: GSE120502 | GEO | 2018/09/27
REPOSITORIES: GEO
ACCESS DATA