Project description:Genome-scale CRISPR interference (CRISPRi) is widely utilized to study cellular processes in a variety of organisms. To date, a genome-wide CRISPRi library, optimized for targeting the Saccharomyces cerevisiae genome, has not been presented. Here, we have generated a comprehensive, inducible CRISPRi library, based on spacer design rules optimized for yeast. We have validated this library for genome-wide interrogation of gene function across a variety of applications, including accurate discovery of haploinsufficient genes and identification of enzymatic and regulatory genes involved in adenine and arginine biosynthesis. The comprehensive nature of the library also revealed refined spacer design parameters for transcriptional repression, including location, nucleosome occupancy and nucleotide features. CRISPRi screens using this library can identify genes and pathways with high precision and low false discovery rate across a variety of experimental conditions, enabling rapid and reliable genome-wide assessment of genetic function and interactions in S. cerevisiae.
Project description:The S. cerevisiae genome is the most well-characterized eukaryotic genome and one of the simplest in terms of identifying open reading frames (ORFs), yet its primary annotation has been updated continually in the decade since its initial release in 1996 (Goffeau et al., 1996). The Saccharomyces Genome Database (SGD; www.yeastgenome.org) (Hirschman et al., 2006), the community-designated repository for this reference genome, strives to ensure that the S. cerevisiae annotation is as accurate and useful as possible. At SGD, the S. cerevisiae genome sequence and annotation are treated as a working hypothesis, which must be repeatedly tested and refined. In this paper, in celebration of the tenth anniversary of the completion of the S. cerevisiae genome sequence, we discuss the ways in which the S. cerevisiae sequence and annotation have changed, consider the multiple sources of experimental and comparative data on which these changes are based, and describe our methods for evaluating, incorporating and documenting these new data.
Project description:We created a comprehensive tRNA deletion library in yeast and characterized the phenotypic and further characterized the molecular changes in a subset of deletion strains