Project description:This study addresses the impact of zinc limitation on the opportunistic human pathogen, Pseudomonas aeruginosa. Zinc limitation was assessed in the P. aeruginosa PAO1 strain using an isogenic deletion mutant lacking the periplasmic, zinc solute-binding protein, znuA (PA5498). ZnuA delivers bound zinc to its cognate ABC transporter, ZnuBC, for import into the cytoplasm. Our transcriptional analyses revealed P. aeruginosa to possess a multitude of zinc acquisition mechanisms, each of which were highly up-regulated in the zinc-deficient znuA mutant strain. P. aeruginosa also utilized zinc-independent paralogues of zinc-dependent genes to maintain cellular function under zinc limitation. Together, these data reveal the complex transcriptional response and versatility of P. aeruginosa to zinc depletion.
Project description:Analysis of a SigX knockout mutant of Pseudomonas aeruginosa H103 strain in minimal medium with glucose as carbon source (M9G). SigX, one of the 19 extra-cytoplasmic function sigma factors of P. aeruginosa, was only known to be involved in transcription of the gene encoding the major outer membrane protein OprF in Pseudomonas aeruginosa. Deletion of the ECF sigma factor sigX gene provide insights into the SigX role in several virulence and biofilm- related phenotypes in Pseudomonas aeruginosa.
Project description:We have isolated and characterized several bacteriophages infecting Pseudomonas aeruginosa distantly related to Felix O1 virus and proposed they form a new subfamily named Felixounavirinae. The infectious cycle of bacteriophages belonging to this subfamily has not been studied yet in terms of gene expression. The present study reports the RNA-Seq analysis of bacteriophage PAK_P3 infecting PAK strain of P. aeruginosa. RNA profile of Host and Phage at 0min, 3.5min and 13 min after infection of Pseudomonas aeruginosa PAK strain with the Pseudomonas phage PAK P3. Three biological replicates for each time point.
Project description:The transcriptome of two different Pseudomonas aeruginosa mutant strains were compared to the Pseudomonas aeruginosa wild type strain in the stationary growth phase
Project description:In order to understand how Pseudomonas aeruginosa responds to low oxygen we grew strain PAO1 with 3 different oxygen concentrations: 2%, 0.4% and 0% supplemented with nitrate as an electron acceptor. Gene expression under these conditions was compared to that of cells grown with 20% oxygen. Keywords: Comparison of transcriptome profiles
Project description:PsrA, a transcription factor belonging to the TetR family, is known to participate in the regulation of fatty acid metabolism, type III secretion system, and quinolone signaling in Pseudomonas aeruginosa. Using a psrA overexpression strain, this study conducted a transcriptomic analysis to examine the role of PsrA in P. aeruginosa PAO1.
Project description:Analysis of Pseudomonas aeruginosa PAO1 treated with 200 µM sphingomyelin. Results provide insight into the response to sphingomyelin in P. aeruginosa.
Project description:To gain insights into the initial phases of P. aeruginosa infections and to identify P. aeruginosa genes regulated in response to respiratory epithelia we exposed P. aeruginosa to cultured primary differentiated human airway epithelia. We used a P. aeruginosa strain (PAO1) that causes acute damage to the epithelia and a mutant (PAOSC11) with defects in Type III secretion and in rhamnolipid synthesis. The mutant did not cause rapid damage to epithelia as did the wildtype. Keywords: Pseudomonas aeruginosa and respiratory epithelia
Project description:Pseudomonas aeruginosa (P. aeruginosa) lung infection is a significant cause of mortality in patients with cystic fibrosis (CF). Most CF patients acquire unique P. aeruginosa strains from the environment; however clonal strains have been identified in CF communities in several countries. Two clonal strains infect 10% to 40% of patients in three CF clinics in mainland eastern Australia. The expression profiles of four planktonically-grown isolates of one Australian clonal strain (AES-2), and four non–clonal CF P. aeruginosa isolates were compared to each other and to the reference strain PAO1 using the Affymetrix P. aeruginosa PAO1 genome array, to gain insight into properties mediating the enhanced infectivity of AES-1. The isolates were subsequently grown as 3-day old biofilms and similarly extracted for RNA and compared as above. Data analysis was carried out using BIOCONDUCTOR software. Keywords: Comparative strain hybridization