Project description:We performed a transcriptome analysis of Ruminococcus gnavus with and without 0.1% (w/w) agarooligosaccharide exposure to validate the mechanism of growth inhibition.
Project description:This study compares growth of Ruminococcus flavefaciens FD-1 with cellulose or cellobiose as the carbohydrate substrate. Ruminococcus flavefaciens is a predominant cellulolytic rumen bacterium, which forms a multi-enzyme cellulosome complex that could play an integral role in the ability of this bacterium to degrade plant cell wall polysaccharides. Identifying the major enzyme types involved in plant cell wall degradation is essential for gaining a better understanding of the cellulolytic capabilities of this organism as well as highlighting potential enzymes for application to improvement of livestock nutrition and for conversion of cellulosic biomass to liquid fuels. These results show that the growth substrate drives expression of enzymes predicted to be involved in carbohydrate metabolism as well as expression and assembly of key cellulosomal enzyme components. 1 species (Ruminococcus flavefaciens FD_1), 2 conditions (cellulose, cellobiose), 4 biological replicates. Direct design with biological dye swap.
Project description:Paper title: Production of lantibiotics from the anaerobe Ruminococcus flavefaciens FD-1 in Escherichia coli
Author list: Zhao, X, van der Donk W. A.
Citation: Chemistry & Biology, accepted.
Brief description of data: Fragmentation data of heterologously expressed lanthipeptides from Ruminococcus flavefaciens FD-1. Full length, modified peptides were cleaved with Glu-C or chymotrypsin and purified by reverse phase HPLC prior to analysis.
Project description:This study compares growth of Ruminococcus flavefaciens FD-1 with cellulose or cellobiose as the carbohydrate substrate. Ruminococcus flavefaciens is a predominant cellulolytic rumen bacterium, which forms a multi-enzyme cellulosome complex that could play an integral role in the ability of this bacterium to degrade plant cell wall polysaccharides. Identifying the major enzyme types involved in plant cell wall degradation is essential for gaining a better understanding of the cellulolytic capabilities of this organism as well as highlighting potential enzymes for application to improvement of livestock nutrition and for conversion of cellulosic biomass to liquid fuels. These results show that the growth substrate drives expression of enzymes predicted to be involved in carbohydrate metabolism as well as expression and assembly of key cellulosomal enzyme components.