Project description:Change in gene expression for a wild-type (Nostoc punctiforme ATCC 29133) and hmpD-deletion strain (UCD 543) of Nostoc punctiforme ATCC 29133 over the time course of hormogonium development This study is further descirbed in Risser, D.D. and Meeks, J.C. 2013. Comparative transcriptomics with a motility deficient mutant leads to identification of a novel polysaccharide secretion system in Nostoc punctiforme. Molecular Microbiology
Project description:Change in gene expression for a wild-type (Nostoc punctiforme ATCC 29133) and hmpD-deletion strain (UCD 543) of Nostoc punctiforme ATCC 29133 over the time course of hormogonium development This study is further descirbed in Risser, D.D. and Meeks, J.C. 2013. Comparative transcriptomics with a motility deficient mutant leads to identification of a novel polysaccharide secretion system in Nostoc punctiforme. Molecular Microbiology Total RNA from 3 biological replicates at each time point from 0 to 24 hours after hormogonium induction was converted to cDNA, dye-labled and hybridized to nimblegen 12x135k array slides
Project description:To identify the mechanisms of the adaptation to terrestrial ecosystems, an RNA-seq based transcriptome analysis was conducted on a desiccation resistant cyanobacterium, Nostoc sp. MG11.
Project description:To investigate the function of All0854, we constructed the all0854 deletion mutant Mall0854, in which all0854 was knocked out by CRISPER-cpf1. We then performed gene expression profiling analysis using data obtained from RNA-seq of wide type Nostoc sp. PCC 7120 and Mall0854.
Project description:Welan gum is mainly produced by Sphingomonas sp. ATCC 31555 and has broad applications in industry such as that in cement production. Both carbon and nitrogen sources are essential for welan production. However, how nitrogen sources affect the metabolism and gene transcription of welan remains elusive. Here, we used next-generation sequencing RNA-seq to analyze the transcriptome of Sphingomonas sp. ATCC 31555 in the presence of inorganic or organic nitrogen sources. Enriched gene expression and pathway analysis suggest that organic nitrogen sources significantly enhanced the expression of genes in central metabolic pathways of Sphingomonas sp. ATCC 31555 and those critical for welan synthesis compared to that observed using inorganic nitrogen sources. The present study improves our understanding of the molecular mechanism underlying the use of nitrogen in welan synthesis in Sphingomonas sp., as well as provides an important transcriptome resource for Sphingomonas sp. in relation to nitrogen sources.