Project description:As the most studied type of epigenetic modifications found in many taxa, DNA methylation has been confirmed to play a crucial role in transposon silencing, transcriptional regulation and thus phenotypic variation, as well as rapid adaption to changing environments. To fully understand the methylome variation in Trichinella, here, we report 12 single-base resolution methylomes of three life stages using WGBS. By comparative epigenomics, we observe that the methylome variation in Trichinella is significantly divergent and host-related. By comparative epigenomics, we observe that the methylome variation in Trichinella is significantly divergent and host-related. By comparing DNA methylation patterns between different host classes of species, we found a fraction of parasitism-related genes under epigenetic regulation, such as G-protein-coupled receptor, DNaseII and ligand-gated chloride channel. Moreover, we also reveal associations between methylation divergence and genetic basis, including nucleotide variant and structural variation.
Project description:Samples were isolated from six different P. infestans life stages (hyphae, sporangia, zoospores, cysts, germinated cysts and appressoria).
Project description:We compare the epigenomes of mouse intestinal epithelial cells at different intestinal regions and life stages of the mouse. We use a sequencing assay for transposase accessible chromatin (ATAC-seq) to determine highly accessible genomic regions. We determine regions that are differentially accessible between intestinal regions (duodenal crypt, duodenal villus, and colon) and between life stages (12-to-15-day-old/juvenile, 90-day-old/adult, and 21-month-old/geriatric).
Project description:The sea-run phenotype of rainbow trout (Oncorhynchus mykiss), like other anadromous salmonids, present a juvenile stage fully adapted to life in freshwater known as parr. Development in freshwater is followed by the smolt stage, where preadaptations needed for seawater life are developed making fish ready to migrate to the ocean, after which event they become post-smolts. While these three life stages have been studied using a variety of approaches, proteomics has never been used for such purpose. The present study characterised the blood plasma proteome of parr, smolt and post-smolt rainbow trout using a gel electrophoresis liquid chromatography tandem mass spectrometry approach alone or in combination with low-abundant protein enrichment technology (combinatorial peptide ligand library). In total, 1,822 proteins were quantified, 17.95% of them being detected only in plasma post enrichment. Across all life stages, the most abundant proteins were ankyrin-2, DNA primase large subunit, actin, serum albumin, apolipoproteins, hemoglobin subunits, hemopexin-like proteins and complement C3. When comparing the different life stages, 17 proteins involved in mechanisms to cope with hyperosmotic stress and retinal changes, as well as the downregulation of nonessential processes in smolts, were significantly different between parr and smolt samples. On the other hand, 11 proteins related to increased growth in post-smolts, and also related to coping with hyperosmotic stress and to retinal changes, were significantly different between smolt and post-smolt samples. Overall, this study presents a series of proteins with the potential to complement current seawater-readiness assessment tests in rainbow trout, which can be measured non-lethally in an easily accessible biofluid. Furthermore, this study represents a first in-depth characterisation of the rainbow trout blood plasma proteome, having considered three life stages of the fish and used both fractionation alone or in combination with enrichment methods to increase protein detection.