Project description:The trematode Nanophyetus salmincola is known as the carrier of Neorickettsia helminthoeca, an obligate intracellular endosymbiotic bacterium that causes salmon poisoning disease (SPD), a fatal disease of dogs. The bacteria are maintained through the complex life cycle of N. salmincola that involves snails Juga plicifera as the first intermediate host, salmonid fishes as the second intermediate host and fish-eating mammals as definitive hosts. N. salmincola was also found to harbor a second species of Neorickettsia that causes the Elokomin fluke fever disease (EFF) which has clinical signs similar to SPD in bears, but only low grade illness in dogs. The EFF agent has not been sequenced. In this study we identified N. salmincola as the vector of yet additional species of Neorickettsia known as Stellanchasmus falcatu (SF) agent using DNA sequencing.
Project description:Digeneans are endoparasitic flatworms with complex life cycles including one or two intermediate hosts (first of which is always a mollusk) and a vertebrate definitive host. Digeneans may harbor intracellular endosymbiotic bacteria belonging to the genus Neorickettsia (order Rickettsiales, family Anaplasmataceae). Some Neorickettsia are able to invade cells of the digenean's vertebrate host and are known to cause diseases of wildlife and humans. In this study we report the results of screening 771 digenean samples for Neorickettsia collected from various vertebrates in terrestrial, freshwater, brackish, and marine habitats in the United States, China and Australia. Neorickettsia were detected using a newly designed real-time PCR protocol targeting a 152 bp fragment of the heat shock protein coding gene, GroEL, and verified with nested PCR and sequencing of a 1371 bp long region of 16S rRNA. Eight isolates of Neorickettsia have been obtained. Sequence comparison and phylogenetic analysis demonstrated that 7 of these isolates, provisionally named Neorickettsia sp. 1-7 (obtained from allocreadiid Crepidostomum affine, haploporids Saccocoelioides beauforti and Saccocoelioides lizae, faustulid Bacciger sprenti, deropegid Deropegus aspina, a lecithodendriid, and a pleurogenid) represent new genotypes and one (obtained from Metagonimoides oregonensis) was identical to a published sequence of Neorickettsia known as SF agent. All digenean species reported in this study represent new host records. Three of the 6 digenean families (Haploporidae, Pleurogenidae, and Faustulidae) are also reported for the first time as hosts of Neorickettsia. We have detected Neorickettsia in digeneans from China and Australia for the first time based on PCR and sequencing evidence. Our findings suggest that further surveys from broader geographic regions and wider selection of digenean taxa are likely to reveal new Neorickettsia lineages as well as new digenean host associations.
Project description:The genus Neorickettsia comprises trematode-associated bacteria that can cause diseases in animals and humans. Despite detection of Neorickettsia antigens in the intestine of coatis kept in captivity in southern Brazil through immunohistochemistry, the molecular identity of the bacteria in South American procyonids remains elusive. The aim of the present study was to investigate the occurrence of Neorickettsia sp. in blood samples from coatis in central-western Brazil. Between March 2018 and January 2019, animals were captured and recaptured in two areas of the Cerrado (Parque Estadual do Prosa, PEP; and Vila da Base Aérea, VBA) located in the city of Campo Grande, state of Mato Grosso do Sul, central-western Brazil. All captures were performed according to convenience. DNA from 97 blood samples was subjected to nested PCR (nPCR) targeting a fragment of the 16S rRNA gene of Neorickettsia sp. Six samples (3.6%; five from VBA and one from PEP) from different coatis were positive in nPCR based on the 16S rRNA. The sequences obtained (~500 bp) showed ˃ 99% similarity to N. risticii. Phylogenetic analysis clustered the sequences detected in the present study in a clade with N. risticii. This is the first molecular detection of Neorickettsia sp. in coatis in Brazil.
Project description:Background: Ependymomas encompass multiple, clinically relevant tumor types based on localization and molecular profiles. Although tumors of the methylation class “spinal ependymoma” (SP-EPN) represent the most common intramedullary neoplasms in children and adults, their developmental origin is ill-defined, molecular data are scarce, and the potential heterogeneity within SP-EPN remains unexplored. The only known recurrent genetic events in SP-EPN are loss of chromosome 22q and NF2 mutations, but neither types and frequency of these alterations nor their clinical meaning have been described in a large, epigenetically defined series. Methods: We mapped SP-EPN transcriptomes (n=76) to developmental atlases of the developing and adult spinal cord to uncover potential developmental origins of these tumors. In addition, transcriptomic, epigenetic (n=234), genetic (n=140), and clinical analyses (n=115) were integrated for a detailed overview on this entity. Results: Integration of transcriptomic ependymoma data with single-cell atlases of the spinal cord identified mature adult ependymal cells to display highest similarities to SP-EPN. Unsupervised hierarchical clustering of tumor data together with integrated analysis of methylation profiles identified two molecular SP-EPN subtypes. Subtype 1 predominantly contained NF2 wild type sequences with regular NF2 expression but revealed more extensive copy number alterations. Subtype 2 harbored previously known germline or sporadic NF2 mutations and was NF2-deficient in most cases, more often showed multilocular disease, and demonstrated a significantly reduced progression-free survival. Conclusion: Based on integrated molecular profiling of a large tumor series we identify two distinct SP-EPN subtypes with important implications for genetic counseling, patient surveillance, and drug development priorities.