Project description:We created a multi-species microarray platform, containing probes to the whole genomes of seven different Saccharomyces species, with very dense coverage (one probe every ~500 bp) of the S. cerevisiae genome, including non-S288c regions, mitochondrial and 2 micron circle genomes, plus probes at fairly dense coverage (one probe every ~2,100 bp) for each of the genomes of six other Saccharomyces species: S. paradoxus, S. mikatae, S. kudriavzevii, S. bayanus, S. kluyveri and S. castellii. We performed array-Comparative Genomic Hybridization (aCGH) using this platform, examining 83 different Saccharomyces strains collected across a wide range of habitats; of these, 69 were widely used commercial S. cerevisiae wine strains, while the remaining 14 were from a wide range of other industrial and natural habitats. Thus, we were able to sample much of the pan-genome space of the Saccharomyces genus. We observed interspecific hybridization events, introgression events, and pervasive copy number variation (CNV) in all but a few of the strains. These CNVs were distributed throughout the strains such that they did not produce any clear phylogeny, suggesting extensive mating in both industrial and wild strains. To validate our results and to determine whether apparently similar introgressions and CNVs were identical by descent or recurrent, we also performed whole genome sequencing on nine of these strains. These data may help pinpoint genomic regions involved in adaptation to different industrial milieus, as well as shed light on the course of domestication of S. cerevisiae.
Project description:The chlorinated ethene-respiring bacteria of the genus Dehalococcoides are important for bioremediation. A microarray targeting genes from all available sequenced genomes of the Dehalococcoides genus was designed with 4305 probe sets to target 98.6% of all genes from strains 195, CBDB1, BAV1, and VS. The microarrays were validated with genomic DNA (gDNA) of strains 195 and BAV1 and satisfactory analytical reproducibility, quantitative response and gene detection accuracy were obtained. These microarrays were applied to query the genomes of two recently isolated Dehalococcoides strains, ANAS1 and ANAS2. Strains ANAS1 and ANAS2 can both couple the reduction of TCE, cDCE and 1,1-DCE but not PCE and tDCE with growth while only strain ANAS2 couples VC reduction to growth. Analysis of the respective gDNA using the microarrays showed that the genomes of both strains are similar to each other and to strain 195, except for genes that are within the previously defined integrated elements (IEs) or high plasticity regions (HPRs). Similar results to the combined isolates were obtained when gDNA of ANAS, the enrichment culture from which the two Dehalococcoides isolates originated, was applied to the microarrays. The genome similarities, together with the distinct chlorinated ethene usage of strains ANAS1, ANAS2 and 195 demonstrate that closely phylogenetically related strains can be physiologically different. This incongruence between physiology and core genome phylogeny appears to be driven by the presence of distinct reductive dehalogenase (RDase)-encoding genes with characterized chlorinated ethene functions (pceA, tceA in strain 195; tceA in strain ANAS1; vcrA in strain ANAS2). Genes encoding central metabolic functions of strain 195 were all detected in strains ANAS1 and ANAS2, while interestingly, the tryptophan operon of these strains is similar to that of strain VS. Overall, the microarrays are a valuable high-throughput tool for comparative genomics of un-sequenced Dehalococcoides-containing samples.
Project description:Aspergillus flavus and A. oryzae represent two unique species predicted to have spent centuries in vastly different environments. A. flavus is an important opportunistic plant pathogen known for contaminating crops with the carcinogenic mycotoxin, aflatoxin and A. oryzae is a domesticated fungus used in food fermentations. Remarkably, the genomes of these two species are still nearly identical. We have used the recently sequenced genomes of A. oryzae RIB40 and A. flavus NRRL3357 along with array based comparative genome hybridization (CGH) as a tool to compare genomes across several strains of these two species. A comparison of three strains from each species by CGH revealed only 42 and 129 genes unique to A. flavus and A. oryzae, respectively. Further, only 709 genes were identified as being polymorphic between the species. Despite the high degree of similarity between these two species, correlation analysis among all data from the CGH arrays for all strains used in this study reveals a species split. However, this view of species demarcation becomes muddled when focused on only those genes for secondary metabolism.
Project description:We performed whole genome single nucleotide polymorphism (SNP) based analysis of all available Venezuelan equine encephalitis (VEE) virus antigenic complex genomes and developed a high resolution genome-wide SNP microarray. We used the SNP microarray to analyze a broad panel of VEEV isolates, found excellent concordance between array and sequence based genotypes for previously sequenced strains, and genotyped unsequenced strains.
2016-03-24 | GSE79530 | GEO
Project description:Transcriptome analysis of Maribellus comscasis WC007
Project description:Cotton bacterial blight (CBB), an important disease of (Gossypium hirsutum) in the early 20th century, had been controlled by resistant germplasm for over half a century. Recently, CBB re-emerged as an agronomic problem in the United States. Analysis of cotton variety planting statistics indicates a steady increase in the percentage of susceptible cotton varieties grown each year since 2009. Phylogenetic analysis revealed that strains from the current outbreak cluster with race 18 Xanthomonas citri pv. malvacearum (Xcm) strains. Illumina based draft genomes were generated for thirteen Xcm isolates. These genomes, along with 4 previously published Xcm genomes, encode 24 conserved and nine variable type three effectors. Strains in the race 18 clade contain 3 to 5 more effectors than other Xcm strains. SMRT sequencing of two geographically and temporally diverse strains of Xcm yielded circular chromosomes and accompanying plasmids. These genomes encode eight and thirteen distinct transcription activator-like effector genes. RNA-sequencing revealed 52 genes induced within two cotton cultivars by both tested Xcm strains. This gene list includes a homeologous pair of genes, with homology to the known susceptibility gene, MLO. In contrast, the two strains of Xcm induce different class III SWEET sugar transporters. Subsequent genome wide analysis revealed patterns in the overall expression of homeologous gene pairs in cotton after inoculation by Xcm. These data reveal host-pathogen specificity at the genetic level and strategies for future development of resistant cultivars.