Project description:In order to obtain a global view about the strategies used by phytopathogenic bacteria, in response to physiologically relevant temperature changes. We used the DNA microarray technology to compare gene expression profile in the model bacterial pathogen P. syringae pv. phaseolicola NPS3121 grown at 18 M-BM-:C and 28M-BM-:C. To carry out this study, we used this DNA microarray of P. syringae pv. phaseolicola NPS3121. Each microarray experiment was repeated six times; two technical replicates with the same RNA samples and three biological replicates using RNA isolated from a different culture.
Project description:In order to obtain a global view about the strategies used by phytopathogenic bacteria, in response to physiologically relevant temperature changes. We used the DNA microarray technology to compare gene expression profile in the model bacterial pathogen P. syringae pv. phaseolicola NPS3121 grown at 18 ºC and 28ºC.
Project description:Pseudomonas syringae pv. phaseolicola (Pph) is a significant bacterial pathogen of agricultural crops, and phage Φ6 and other members of the dsRNA virus family Cystoviridae undergo lytic (virulent) infection of Pph, using the type IV pilus as the initial site of cellular attachment. Despite the popularity of Pph/phage Φ6 as a model system in evolutionary biology, Pph resistance to phage Φ6 remains poorly characterized. To investigate differences between phage Φ6 resistant Pseudomonas syringae pathovar phaseolicola strains, we performed expression analysis of super and non piliated strains of Pseudomonas syringae to determine the genetic cause of resistance to viral infection.
Project description:P. syringae pv. phaseolicola, the causal agent of halo blight disease in bean, produces a toxin known as phaseolotoxin, whose synthesis involves the product of some of the genes found within the Pht region. This region, considered a pathogenicity island, comprises 23 genes arranged in five transcriptional units; two single-gene units (argK, phtL) and three arranged as operons (phtA, phtD, phtM), most with unknown function. In P. syringae pv. phaseolicola, maximal expression of most of the genes encoded in the Pht region and the synthesis of phaseolotoxin require the product of the phtL gene, which has been proposed to have a regulatory function. In order to evaluate the role of phtL gene in P. syringae pv. phaseolicola, we performed a comparative transcriptional analysis with the wild type and a phtL- mutant strains using microarrays. The microarray data analysis showed that PhtL regulates the expression not only of genes within the Pht region, but also alters the expression of genomic genes related with the iron-acquisition system, pathogenicity, oxidative stress and virulence. This study suggests the possible relation of the PhtL protein with the iron response genes and with the pathogenicity and or virulence of this bacterium.
Project description:The PhtL protein of Pseudomonas syringae pv. phaseolicola NPS3121 affects the expression of both phaseolotoxin cluster (Pht) and Non-Pht encoded genes