Project description:To identify novel miRNAs involved in the regulation of learning and memory formation, we used the Morris water maze task to distinguish inbred wild-type C57BL/6J mice with good or poor learning and memory capability. C57BL/6J mice which undergo water maze task were sacrificed immediately after training. The hippocampus was harvested for miRNAs expression analysis with miRNA array (Phalanx Mouse & Rat miRNA OneArray® 2.0, annotation based on: miRBase release 15). These differentially expressed miRNAs were applied for further investigation.
Project description:Early-life exposure to high-fat diet (HF) can program metabolic and cognitive alterations in adult offspring. Although the hippocampus plays a crucial role in memory and metabolic homeostasis, few studies reported the impact of maternal HF on this structure. We assessed the effects of maternal HF during lactation on physiological, metabolic and cognitive parameters in young adult offspring mice. To identify early-programming mechanisms in hippocampus, we developed a multi-omics strategy in male and female offspring. Maternal HF induced a transient increased body weight at weaning, a mild glucose intolerance only in 3-month-old male mice with no change in plasma metabolic parameters in adult male and female offspring. Behavioral alterations revealed by Barnes maze test were observed both in 6-month-old male and female mice. Multi-omics strategy unveiled sex-specific transcriptomic and proteomic modifications in the hippocampus of adult offspring. These studies, that were confirmed by regulon analysis, showing that, although genes whose expression was modified by maternal HF were different between sexes, the main pathways affected were similar with mitochondria and synapses as main hippocampal targets of maternal HF. The effects of maternal HF reported here may help to better characterize sex-dependent molecular pathways involved in cognitive disorders and neurodegenerative diseases.
Project description:While global transcription factors (TFs) have been studied extensively in Escherichia coli model strains, conservation and diversity in TF regulation between strains is still unknown. Here we use a combination of ChIP-exo--to define ferric uptake regulator (Fur) binding sites--and differential gene expression--to define the Fur regulon in nine E. coli strains. We then define a pan-regulon consisting of 469 target genes that includes all Fur target genes in all nine strains. The pan-regulon is then divided into the core regulon (target genes found in all the strains, n=36), the accessory regulon (target found in two to eight strains, n=158) and the unique regulon (target genes found in one strain, n=275). Thus, there is a small set of Fur regulated genes common to all nine strains, but a large number of regulatory targets unique to a particular strain. Many of the unique regulatory targets are genes unique to that strain. This first-established pan-regulon reveals a common core of conserved regulatory targets and significant diversity in transcriptional regulation amongst E. coli strains, reflecting diverse niche specification and strain history.