Project description:The transcriptional regulator Mga of Streptococcus pyogenes (the group A streptococcus, GAS) is known to directly activate several virulence genes important for colonization and immune evasion during exponential growth. Transcriptome analysis comparing two mga-1 serotypes (M1 SF370, M6 JRS4) and one mga-2 serotype (M4 GA40634) against their isogenic mga-inactivated strains uncovered a broader Mga regulon profile containing both activated and repressed genes with predicted functions primarily related to the uptake and metabolism of sugars. Although the divergent M1 and M4 Mga profiles were similar in size and content, the M6 JRS4 strain was clearly distinct, even from other M6 strains. Real-time RT-PCR and northern blot analysis validated our microarray results and confirmed that established core Mga regulon genes directly activated by Mga (emm, scpA, sof, fba) exhibited the highest activation levels across all strains tested. A novel ORF (Spy2036) encoding a cytosolic hypothetical protein was highly activated in all three serotypes and was called gene regulated by Mga or grm. Mga was shown to bind directly to Pgrm, which overlaps the Mga-regulated Psof in OF+ strains, suggesting that grm is part of the core Mga regulon and is able to activate two divergently transcribed genes from a single site in a class II background. Both class and serotype specific Mga-regulated genes, such as speB, were apparent. In fact, Mga activated speB as long as it was expressed in the wild type strain, although direct binding of Mga to the PspeB promoter could not be demonstrated. Thus, Mga is able to both directly and indirectly regulate genes shown to be important for virulence and the metabolic homeostasis of GAS. Keywords: Wild-type vs Mga-
Project description:The transcriptional regulator Mga of Streptococcus pyogenes (the group A streptococcus, GAS) is known to directly activate several virulence genes important for colonization and immune evasion during exponential growth. Transcriptome analysis comparing two mga-1 serotypes (M1 SF370, M6 JRS4) and one mga-2 serotype (M4 GA40634) against their isogenic mga-inactivated strains uncovered a broader Mga regulon profile containing both activated and repressed genes with predicted functions primarily related to the uptake and metabolism of sugars. Although the divergent M1 and M4 Mga profiles were similar in size and content, the M6 JRS4 strain was clearly distinct, even from other M6 strains. Real-time RT-PCR and northern blot analysis validated our microarray results and confirmed that established core Mga regulon genes directly activated by Mga (emm, scpA, sof, fba) exhibited the highest activation levels across all strains tested. A novel ORF (Spy2036) encoding a cytosolic hypothetical protein was highly activated in all three serotypes and was called gene regulated by Mga or grm. Mga was shown to bind directly to Pgrm, which overlaps the Mga-regulated Psof in OF+ strains, suggesting that grm is part of the core Mga regulon and is able to activate two divergently transcribed genes from a single site in a class II background. Both class and serotype specific Mga-regulated genes, such as speB, were apparent. In fact, Mga activated speB as long as it was expressed in the wild type strain, although direct binding of Mga to the PspeB promoter could not be demonstrated. Thus, Mga is able to both directly and indirectly regulate genes shown to be important for virulence and the metabolic homeostasis of GAS. Keywords: Wild-type vs Mga-
Project description:The transcriptional regulator Mga of Streptococcus pyogenes (the group A streptococcus, GAS) is known to directly activate several virulence genes important for colonization and immune evasion during exponential growth. Transcriptome analysis comparing two mga-1 serotypes (M1 SF370, M6 JRS4) and one mga-2 serotype (M4 GA40634) against their isogenic mga-inactivated strains uncovered a broader Mga regulon profile containing both activated and repressed genes with predicted functions primarily related to the uptake and metabolism of sugars. Although the divergent M1 and M4 Mga profiles were similar in size and content, the M6 JRS4 strain was clearly distinct, even from other M6 strains. Real-time RT-PCR and northern blot analysis validated our microarray results and confirmed that established core Mga regulon genes directly activated by Mga (emm, scpA, sof, fba) exhibited the highest activation levels across all strains tested. A novel ORF (Spy2036) encoding a cytosolic hypothetical protein was highly activated in all three serotypes and was called gene regulated by Mga or grm. Mga was shown to bind directly to Pgrm, which overlaps the Mga-regulated Psof in OF+ strains, suggesting that grm is part of the core Mga regulon and is able to activate two divergently transcribed genes from a single site in a class II background. Both class and serotype specific Mga-regulated genes, such as speB, were apparent. In fact, Mga activated speB as long as it was expressed in the wild type strain, although direct binding of Mga to the PspeB promoter could not be demonstrated. Thus, Mga is able to both directly and indirectly regulate genes shown to be important for virulence and the metabolic homeostasis of GAS. Keywords: Wild-type vs Mga-
Project description:We sought understand the molecular mehcanism of gene regulation by Mga and its contribution to GAS pathogenesis in serotype M59 GAS through whole transcriptome analysis of strains with phosphorylation mimicking substitutions in key histidine residues of Mga. There were 6 strains analyzed, each in triplicate replicates: 1)wild-type GAS, 2)mga deletion strain 3)mga with alanine at H207 4)mga with aspartate at H207, 5) mga with alanine at H273 6)mga with aspartate at H273
Project description:Four glioblastoma cell line U-343 MG, U-343 MGa, U-343 MGa 31L, U-343 MGa Cl2:6 were derived form the same glioblastoma U-343. The RNA-seq was performed to identify their difference and better understand the glioblastoma heterogeneity.
Project description:MGA (Max-gene associated) is a dual-specificity transcription factor that negatively regulates MYC-target genes to inhibit proliferation and promote differentiation. Loss-of-function mutations in MGA have been commonly identified in several hematological neoplasms, including acute myeloid leukemia (AML) with RUNX1::RUNX1T1, however, very little is known about the impact of these MGA alterations on normal hematopoiesis or disease progression. We show that representative MGA mutations identified in patient samples abolish protein-protein interactions and transcriptional activity. Using a series of human and mouse model systems, including a newly developed conditional knock-out mouse strain, we demonstrate that loss of MGA results in upregulation of MYC and E2F targets, cell cycle genes, mTOR signaling, and oxidative phosphorylation in normal hematopoietic cells, leading to enhanced proliferation. The loss of MGA induces an open chromatin state at promotors of genes involved in cell cycle and proliferation. RUNX1::RUNX1T1 expression in Mga-deficient murine hematopoietic cells leads to a more aggressive AML with a significantly shortened latency. These data show that MGA regulates multiple pro-proliferative pathways in hematopoietic cells and cooperates with the RUNX1::RUNX1T1 fusion oncoprotein to enhance leukemogenesis.
Project description:MGA (Max-gene associated) is a dual-specificity transcription factor that negatively regulates MYC-target genes to inhibit proliferation and promote differentiation. Loss-of-function mutations in MGA have been commonly identified in several hematological neoplasms, including acute myeloid leukemia (AML) with RUNX1::RUNX1T1, however, very little is known about the impact of these MGA alterations on normal hematopoiesis or disease progression. We show that representative MGA mutations identified in patient samples abolish protein-protein interactions and transcriptional activity. Using a series of human and mouse model systems, including a newly developed conditional knock-out mouse strain, we demonstrate that loss of MGA results in upregulation of MYC and E2F targets, cell cycle genes, mTOR signaling, and oxidative phosphorylation in normal hematopoietic cells, leading to enhanced proliferation. The loss of MGA induces an open chromatin state at promotors of genes involved in cell cycle and proliferation. RUNX1::RUNX1T1 expression in Mga-deficient murine hematopoietic cells leads to a more aggressive AML with a significantly shortened latency. These data show that MGA regulates multiple pro-proliferative pathways in hematopoietic cells and cooperates with the RUNX1::RUNX1T1 fusion oncoprotein to enhance leukemogenesis.