Project description:Biological control is a promising approach to control diseases caused by Pythium species. Unusually for a single genus, the Pythium genus also includes species that can antagonise Pythium plant pathogens, such as Pythium oligandrum. These Pythium plant pathogens are commonly found in the soil such as the broad host-range pathogen Pythium myriotylum and cause various diseases of important crops. While P. oligandrum genes expressed in the interaction with oomycete plant pathogens have been identified previously, the transcriptional response of an oomycete plant pathogen to P. oligandrum has not been investigated. An isolate of P. oligandrum, GAQ1, recovered from soil could antagonise P. myriotylum in a plate-based confrontation assay. The P. oligandrum isolate had a strong disease control effect on soft-rot of ginger caused by P. myriotylum. We investigated the transcriptional interaction between P. myriotylum and P. oligandrum. As part of the transcriptional response of P. myriotylum to the presence of P. oligandrum, putative effector genes such as a sub-set of Kazal-type protease inhibitors were strongly upregulated. P. myriotylum cellulases and elicitin-like putative effectors were also upregulated. In P. oligandrum, cellulases, peroxidases, proteases and NLP effectors were upregulated. The transcriptional response of P. myriotylum suggests clear features of a counter-attacking strategy that may contribute to the variable success and durability of biological attempts to control diseases caused by Pythium species. Whether aspects of this counter-attack could inhibit aspects of this virulence of P. myriotylum is another interesting aspect for future studies.
Project description:Nicotiana benthamiana is an important model plant for plant-microbe interaction studies. We compared the proteomes of ribosomes purified from healthy N. benthamiana plants and plants that were infected with two plant pathogens potato virus A (PVA genus Potyvirus) and A. tumefaciens bacteria. Ribosomes were affinity purified from transgenic leaves that expressed FLAG-tagged RPL18B (RPL: ribosome protein large subunit) of A. thaliana. Control purifications were made from non-transgenic plants that were infected with PVA. Our riboproteome revealed ~6600 r-protein hits representing 424 distinct r-proteins that were members from 71 of the expected 81 r-protein families.
Project description:Plant microRNAs (miRNAs) are a class of non-coding RNAs that play important regulatory roles in plant development, defense and abnormal disease symptom formation. Here, 547 known miRNAs, representing 129 miRNA families, and 282 potential novel miRNAs were identified in Beta macrocarpa using small RNA deep sequencing. Through a differential expression analysis, miRNAs responding to Beet necrotic yellow vein virus (BNYVV) infection were identified and confirmed using a microarray analysis. In total, 103 known miRNAs, representing 38 miRNA families, and 45 potential novel miRNAs were differentially regulated, with at least a two-fold change, in BNYVV-infected plants compared with the mock-inoculated control. These differentially expressed miRNAs were involved in hormone biosynthesis and signal transduction pathways, and enhanced axillary bud development and plant defenses. This work is the first to describe miRNAs of the plant genus Beta and may offer a reference for miRNA research in other species in the genus. It provides valuable information on the pathogenicity mechanisms of BNYVV.
Project description:Plant microRNAs (miRNAs) are a class of non-coding RNAs that play important regulatory roles in plant development, defense and abnormal disease symptom formation. Here, 547 known miRNAs, representing 129 miRNA families, and 282 potential novel miRNAs were identified in Beta macrocarpa using small RNA deep sequencing. Through a differential expression analysis, miRNAs responding to Beet necrotic yellow vein virus (BNYVV) infection were identified and confirmed using a microarray analysis. In total, 103 known miRNAs, representing 38 miRNA families, and 45 potential novel miRNAs were differentially regulated, with at least a two-fold change, in BNYVV-infected plants compared with the mock-inoculated control. These differentially expressed miRNAs were involved in hormone biosynthesis and signal transduction pathways, and enhanced axillary bud development and plant defenses. This work is the first to describe miRNAs of the plant genus Beta and may offer a reference for miRNA research in other species in the genus. It provides valuable information on the pathogenicity mechanisms of BNYVV.
Project description:The rhizosphere is a small region surrounding plant roots that is enriched in biochemicals from root exudates and populated with fungi, nematode, and bacteria. Interaction of rhizosphere organisms with plants is mainly promoted by exudates from the roots. Root exudates contain biochemicals that come from primary and secondary metabolisms of plants. These biochemicals attract microbes, which influence plant nutrition. The rhizosphere bacteria (microbiome) are vital to plant nutrient uptake and influence biotic and abiotic stress and pathogenesis. Pseudomonas is a genus of gammaproteobacteria known for its ubiquitous presence in natural habitats and its striking ecological, metabolic, and biochemical diversity. Within the genus, members of the Pseudomonas fluorescens group are common inhabitants of soil and plant surfaces, and certain strains function in the biological control of plant disease, protecting plants from infection by soilborne and aerial plant pathogens. The soil bacterium Pseudomonas protegens Pf-5 (also known as Pseudomonas fluorescens Pf-5) is a well-characterized biological strain, which is distinguished by its prolific production of the secondary metabolite, pyoverdine. Knowledge of the distribution of P. fluorescens secretory activity around plant roots is very important for understanding the interaction between P. fluorescens and plants and can be achieved by real time tracking of pyoverdine. To achieve the capability of real-time tracking in soil, we have used a structure-switching SELEX strategy to select high affinity ssDNA aptamers with specificity for pyoverdine over other siderophores. Two DNA aptamers were isolated, and their features compared. The aptamers were applied to a nanoporous aluminum oxide biosensor and demonstrated to successfully detect PYO-Pf5. This sensor provides a future opportunity to track the locations around plant roots of P. protegens and to monitor PYO-Pf5 production and movement through the soil.