Project description:This study aims to determine the epidemiology of Enterobacteriaceae resistant to antibiotics of last resort in pregnant women in labour at a tertiary hospital, Pretoria, South Africa. Rectal swabs shall be used to screen for colonisation with CRE and colistin-resistant Enterobacteriales in pregnant women during labour. Carbapenem and colistin-resistant Enterobacterales can cause the following infections: bacteraemia; nosocomial pneumonia; urinary tract infections, and intra-abdominal infections. Due to limited treatment options, infections caused by these multidrug-resistant organisms are associated with a mortality rate of 40-50%. Screening for colonisation of carbapenem-resistant Enterobacteriaceae (CRE) and colistin-resistant Enterobacteriaceae will help implement infection and prevention measures to limit the spread of these multidrug-resistant organisms.
Project description:Nosocomial outbreaks of infections caused by multidrug-resistant Acinetobacter baumannii have emerged as a serious threat to human health. The phosphoproteomics of pathogenic bacteria have been investigated for their role in virulence regulation networks. In this study, we analyzed the phosphoproteomics of two clinical isolates of A. baumannii: imipenem-sensitive strain SK17-S and -resistant strain SK17-R.
Project description:The study aimed to characterize plasmids mediating carbepenem resistance in Klebsiella pneumoniae in Pretoria, South Africa. We analysed 56 K. pneumoniae isolates collected from academic hospital around Pretoria. Based on phenotypic and molecular results of these isolates, 6 representative isolates were chosen for further analysis using long reads sequencing platform. We observed multidrug resistant phenotype in all these isolates, including resistance to aminoglycosides, tetracycline, phenicol, fosfomycin, floroquinolones, and beta-lactams antibiotics. The blaOXA-48/181 and blaNDM-1/7 were manily the plasmid-mediated carbapenemases responsible for carbapenem resistance in the K. pneumoniae isolates in these academic hospitals. These carbapenemase genes were mainly associated with plasmid replicon groups IncF, IncL/M, IncA/C, and IncX3. This study showed plasmid-mediated carbapenemase spread of blaOXA and blaNDM genes mediated by conjugative plasmids in Pretoria hospitals.
2019-10-17 | GSE138949 | GEO
Project description:Multidrug resistant Enterobacterales in travelers before visiting Tanzania
| PRJNA603881 | ENA
Project description:Multidrug resistant Enterobacterales in travelers after visiting Tanzania
Project description:Invasive fungal infections are important healthcare associated disease worldwide especially in intensive care units More recently, Candida auris a multidrug and potentially pan-resistant species has globally emerged as a new nosocomial pathogen, which has been already reported from at least 50 countries on six continents. Clinical studies showed that previously well-defined phylogenetic C. auris clades display significant differences regarding their pathogenicity, virulence, metabolism and susceptibility profile to traditional antifungal therapies. Based on epidemiological data, isolates belonging to the South Asian clade show the highest ratio of resistance to fluconazole (97%), amphotericin B (47%) and this clade involves the highest number of multidrug resistant isolates (45%), which compromise the efficacy of applied antifungal therapy. In the past decade, a new broad-spectrum antifungal drug, isavuconazole (ISA), has been introduced into clinical practice. ISA is primarily approved for the treatment of invasive aspergillosis and mucormycosis, and currently, there are no available recommendations for the therapy of invasive Candida infections. In our previous study, we reported different ISA susceptibility profiles between isolates belonging to South Asian lineage. However, the global transcriptional - even isolate specific - response remained unresolved. Therefore, our study aimed to reveal those molecular events, which are associated with ISA exposure using high throughput RNA sequencing (RNAseq).
Project description:Candida auris is an emerging multidrug-resistant human fungal pathogen often refractory to treatment by all classes of antifungal drugs. Amphotericin B (AmB) is a fungicidal drug that, despite its toxic side effects, remains a drug of choice for the treatment of drug-resistant fungal infections, including those caused by C. auris. However, the molecular mechanisms underlying AmB resistance are poorly understood. In this study, we present data that suggests membrane lipid alterations and chromatin modifications are critical processes that contribute to or cause adaptive AmB resistance in clinical C. auris isolates. To determine the plausible cause of increased AmB resistance, we performed RNA-seq of AmB-resistant and sensitive C. auris isolates. Remarkably, AmB-resistant strains show a pronounced enrichment of genes involved in lipid and ergosterol biosynthesis, adhesion, drug transport as well as chromatin remodeling. The transcriptomics data confirm increased adhesion and reduced lipid membrane permeability of AmB-resistant strains compared to the sensitive isolates. The AmB-resistant strains also display hyper-resistance to cell wall perturbing agents, including congo red, calcofluor white and caffeine. Additionally, we noticed an increased phosphorylation of Mkc1 cell integrity MAP kinase upon AmB treatment. Collectively, these data identify differences in the transcriptional landscapes of AmB-resistant vs AmB-senstive isolates, and provide a framework for the mechanistic understanding of AmB resistance in C. auris.