Project description:It was found that after OA treatment, compared with the CK group, the abundance of lactic acid bacteria in the intestinal flora of mice in the OA group increased, and the increase in the abundance of lactic acid bacteria made the gene Il10 upregulated, Il10 had a significant effect on tumor volume reduction and prolongation of mouse survival, and played a role through cytokine receptor interaction pathway.
Project description:This study aimed to investigate the effects of oral administration of lactic acid bacteria (LAB) on gene expression in murine ileum. Two LAB strains, Lactococcus lactis subsp. lactis C59 and Lactobacillus rhamnosus GG, were administered to mice for 2 weeks. Microarray analysis was performed using total RNA from upper and lower ileum to detail the gene expression of 3 groups; control, C59-administered and GG-administered. Gene expression of upper ileum was less affected by administered strains than that of lower ileum and the latter was strain-specifically affected.
Project description:D-lactic acid is a three-carbon organic acid with a chiral structure and can improve the thermostability of polylactic acid. Microorganisms such as the methylotrophic yeast Pichia pastoris, which lack the natural ability to produce or accumulate high amounts of D-lactic acid, have been engineered to produce it in high titers. However, tolerance to D-lactic acid remains a challenge. In this study, we demonstrate that cell flocculation improves tolerance to D-lactic acid and leads to increased D-lactic acid production in Pichia pastoris. By incorporating a flocculation gene from Saccharomyces cerevisiae (ScFLO1) into P. pastoris KM71, we created a strain (KM71-ScFlo1) that demonstrated up to a 1.6-fold improvement in specific growth rate at high D-lactic acid concentrations. Furthermore, integrating a D-lactate dehydrogenase gene from Leuconostoc pseudomesenteroides (LpDLDH) into KM71-ScFlo1 resulted in an engineered strain (KM71-ScFlo1-LpDLDH) that can produce D-lactic acid at a titer of 5.12 0.35 g/L in 48 hours , a 2.6-fold improvement over the control strain lacking ScFLO1 expression. Transcriptomics analysis of this strain provided insights into the mechanism of increased tolerance to D-lactic acid including the upregulations of genes involved in lactate transport and iron metabolism. Overall, our work represents an advancement in the efficient microbial production of D-lactic acid by manipulating yeast flocculation.
Project description:This data displays both known and unknown extra-cellular proteins from 13 species of Lactic Acid bacteria found in the honey-crop of the honeybee Apis. mellifera mellifera. The tryptic peptides from the secreted proteins were run on an Agilent HPLC on a C18 reverse phase column (75 µm x 150 mm, particle size 3 µm). Total run time was 90 min and flow rate 300 nl/min. Buffers used for gradient was 0.1% formic acid in water (buffer A) and 0.1% formic acid in acetonitrile (buffer B). The buffer mixing was 5 min 5% buffer B, followed by 5%-45% buffer B in a linear gradient for 50 min, followed by 45%-80% buffer B in a linear gradient for 5 min. The 80% of buffer B was then kept for 15 min and then rapidly back to 5% buffer B for the final 15 min. The fractions from HPLC were loaded on an LCQ Deca XP Plus Ion trap mass spectrometer (ThermoScientific). Genomic DNA were prepared from all 13 LAB strains depicted earlier and sequenced at MWG Eurofins Operon (Ebensburg, Germany) using Roche GS FLX Titanium technology from Roche (Basel, Switzerland). For each genome a shotgun library was constructed with up to 700,000 reads per segment and was generated by sequencing in 2x half segment of a full FLX+ run. Each genome had an 8 kpb long-paired end library constructed. Approximately 300,000 true paired end reads, sequence tags, and scaffolds with GS FLX+ chemistry using 2x half segment of a full run were generated. Clonal amplification was performed by emPCR in both library types. The sequencing was continued until 15-20 fold coverage was reached. The obtained reads were assembled by the software Newbler 2.6 from Roche (Basel, Switzerland). ORF prediction and automated annotation was performed at Integrated Genomics Assets Inc. (Mount Prospect, Illinois, USA). In ORF prediction three different software were used, GLIMMER, Critica, and Prokpeg. Automated annotation was performed with the ERGOTM algorithms (Integrated Genomics Assets Inc. Mount Prospect, Illinois, USA). The resulting mass spectra-files obtained from the mass spectrometry analysis were searched using MASCOT against a local database containing the predicted proteome of the 13 LAB. We used a cut off Ions score of 38 as a value for determining that the protein was identified. Individual ion scores that were greater than 38 indicated identity or extensive homology (p<0.05) of the protein. Protein sequence similarity searches were performed with software BLASTP in the software package BLAST 2.27+ against a non-redundant protein database at NCBI. Pfam (default database), and InterProScan (default databases). Expressed proteins identified by peptide mass fingerprinting were manually re-annotated.