Project description:We report a set of rapid, efficient and low-cost methods for ATAC-seq library construction and data analysis, realized large-scale and rapid sequencing. These methods can provide a reference for the study of epigenetic regulation of gene expression.
Project description:Background: Next-generation sequencing (NGS) is fundamental to the current biological and biomedical research. Construction of sequencing library is a key step of NGS. Therefore, various library construction methods have been explored. However, the current methods are still limited by some shortcomings. Results: This study developed a new NGS library construction method, Single strand Adaptor Library Preparation (SALP), by using a novel single strand adaptor (SSA). SSA is a double-stranded oligonucleotide with a 3ʹ overhang of 3 random nucleotides, which can be efficiently ligated to the 3′ end of single strand DNA by T4 DNA ligase. SALP can be started with any denatured DNA fragments such as those sheared by Tn5 tagmentation, enzyme digestion and sonication. When started with Tn5-tagmented chromatin, SALP can overcome a key limitation of ATAC-seq and become a high-throughput NGS library construction method, SALP-seq, which can be used to comparatively characterize the chromatin openness state of multiple cells unbiasly. In this way, this study successfully characterized the comparative chromatin openness states of four different cell lines, including GM12878, HepG2, HeLa and 293T, with SALP-seq. Similarly, this study also successfully characterized the chromatin openness states of HepG2 cells with SALP-seq by using 105 to 500 cells. Conclusions: This study developed a new NGS library construction method, SALP, by using a novel kind of single strand adaptor (SSA), which should has wide applications in the future due to its unique performance.
Project description:Spike-specific T and B cells from splenocytes of immunized mice were profiled with 10x sequencing for gene expression (Chromium Next Automated GEM 5’ v2 kit), cell surface marker (Chromium Automated 5’ Feature Barcode kit) and immune receptor (Chromium Automated Mouse BCR/TCR Amplification and Library Construction kit)
Project description:Plant small RNAs are a diverse and complex set of molecules, ranging in length from 21 to 24 nt, involved in a wide range of essential biological processes. Nowadays, high-throughput sequencing is the most commonly used method for the discovery and quantification of small RNAs. However, it is known that several biases can occur during the preparation of small RNA libraries, especially using low input RNA. We used two types of plant biological samples to evaluate the performance of seven commercially available methods for small RNA library construction, using different RNA input amounts. We show that when working with plant material, library construction methods have differing capabilities to capture small RNAs, and that different library construction methods provide better results when applied to the detection of microRNAs, phased small RNAs, or tRNA-derived fragments.
Project description:Next-generation sequencing has been widely used for the genome-wide profiling of histone modifications, transcription factor binding and gene expression through chromatin immunoprecipitated DNA sequencing (ChIP-seq) and cDNA sequencing (RNA-seq). Here, we describe a versatile library construction method that can be applied to both ChIP-seq and RNA-seq on the widely used Illumina platforms. Standard methods for ChIP-seq library construction require nanograms of starting DNA, substantially limiting its application to rare cell types or limited clinical samples. By minimizing the DNA purification steps that cause major sample loss, our method achieved a high sensitivity in ChIP-seq library preparation. Using this method, we achieved the following: (1) generated high-quality epigenomic and transcription factor-binding maps using ChIP-seq for murine adipocytes; (2) successfully prepared a ChIP-seq library from as little as 25 pg of starting DNA; (3) achieved paired-end sequencing of the ChIP-seq libraries; (4) systematically profiled gene expression dynamics during murine adipogenesis using RNA-seq; and (5) preserved the strand specificity of the transcripts in RNA-seq. Given its sensitivity and versatility in both double-stranded and single-stranded DNA library construction, this method has wide applications in genomic, epigenomic, transcriptomic and interactomic studies. Pre-adipocytes and mature adipocytes were collected. Their chromatin and RNA were subjected to ChIP and mRNA extraction. Sequencing libraries from ChIP DNA or mRNA were generated following either standard protocols or TELP method. The quality and features of TELP libraries were proved and demonstrated in comparison with standard libraries or other published data.
Project description:Purpose:To identify which genes are differentially expressed in pancreatic islets of the ob/ob mice compared to the control ob/+ mice Methods: The data were aligned to mm10 reference genome with HISAT2 (V2.1.0).Differential expression analysis was performed using the DESeq2(V 1.2.0). Results:Library construction, and sequencing were performed by Beijing Genomic Institution (www.genomics.org.cn, BGI) using an optimized data analysis workflow
Project description:Library preparation for whole genome bisulphite sequencing (WGBS) is challenging due to side effects of the bisulphite treatment, which leads to extensive DNA damage. Recently, a new generation of methods for bisulphite sequencing library preparation have been devised. They are based on initial bisulphite treatment of the DNA, followed by adaptor tagging of single stranded DNA fragments, and enable WGBS using low quantities of input DNA. In this study, we present a novel approach for quick and cost effective WGBS library preparation that is based on splinted adaptor tagging (SPLAT) of bisulphite-converted single-stranded DNA. Moreover, we validate SPLAT against three commercially available WGBS library preparation techniques, two of which are based on bisulphite treatment prior to adaptor tagging and one is a conventional WGBS method.
2016-10-27 | GSE89213 | GEO
Project description:DNA barcode library of mangrove plants in China
Project description:Next-generation sequencing has been widely used for the genome-wide profiling of histone modifications, transcription factor binding and gene expression through chromatin immunoprecipitated DNA sequencing (ChIP-seq) and cDNA sequencing (RNA-seq). Here, we describe a versatile library construction method that can be applied to both ChIP-seq and RNA-seq on the widely used Illumina platforms. Standard methods for ChIP-seq library construction require nanograms of starting DNA, substantially limiting its application to rare cell types or limited clinical samples. By minimizing the DNA purification steps that cause major sample loss, our method achieved a high sensitivity in ChIP-seq library preparation. Using this method, we achieved the following: (1) generated high-quality epigenomic and transcription factor-binding maps using ChIP-seq for murine adipocytes; (2) successfully prepared a ChIP-seq library from as little as 25 pg of starting DNA; (3) achieved paired-end sequencing of the ChIP-seq libraries; (4) systematically profiled gene expression dynamics during murine adipogenesis using RNA-seq; and (5) preserved the strand specificity of the transcripts in RNA-seq. Given its sensitivity and versatility in both double-stranded and single-stranded DNA library construction, this method has wide applications in genomic, epigenomic, transcriptomic and interactomic studies.