Project description:In this report, we describe a successful protocol for isolating and expression-profiling live fluorescent- protein-labelled neurons from zebrafish embryos. As a proof-of-principle for this method, we FAC-sorted and RNA-profiled GFP-labelled spinal CiA interneurons and compared the expression profile of these cells to those of post-mitotic spinal neurons in general and to all trunk cells. We show that RNA of sufficient quality and quantity to uncover both expected and novel transcription profiles via Affymetrix microarray analysis can be extracted from 5,700 to 20,000 FAC-sorted cells. As part of this study, we also further confirm the genetic homology of mammalian and zebrafish V1 interneurons, by demonstrating that zebrafish V1 cells (CiAs) express genes that encode for the transcription factors Lhx1a and Lhx5. This protocol for dissociating, sorting and RNA-profiling neurons from organogenesis-stage zebrafish embryos should also be applicable to other developing organs and tissues and potentially other model organisms.
Project description:Label-free mass spectrometry-based quantitative proteomics was applied to a larval zebrafish spinal cord injury model, which allows axon regeneration and functional recovery within two days (days post lesion; dpl) after a spinal cord transection in 3 day-old larvae (dpf). Proteomic profiling of the lesion site was performed at 1 dpl and 2 dpl as well as corresponding age-matched unlesioned control tissue (4 dpf as control for 1 dpl; 5 dpf as control for 2 dpl).
Project description:The human spinal cord contains diverse cell types, governed by a series of spatiotemporal events for tissue assembly and functions. However, the regulation of cell fate specification in the human developing spinal cord remains largely unknown. By performing single-cell and spatial multi-omics methods, we integrated the datasets and created a comprehensive human developmental atlas of the first trimester spinal cord. Unexpectedly, we discovered unique events in human spinal cord development, including early loss of active neural stem cells, simultaneous occurrence of neurogenesis and gliogenesis, and distinct spatiotemporal genetic regulations of fate choices. We also identified distinct regulations of cancer stem cells in ependymomas from our atlas. Thus, we demonstrate spatiotemporal genetic regulation of human spinal cord development and its potential to understand novel disease mechanisms.
Project description:The human spinal cord contains diverse cell types, governed by a series of spatiotemporal events for tissue assembly and functions. However, the regulation of cell fate specification in the human developing spinal cord remains largely unknown. By performing single-cell and spatial multi-omics methods, we integrated the datasets and created a comprehensive human developmental atlas of the first trimester spinal cord. Unexpectedly, we discovered unique events in human spinal cord development, including early loss of active neural stem cells, simultaneous occurrence of neurogenesis and gliogenesis, and distinct spatiotemporal genetic regulations of fate choices. We also identified distinct regulations of cancer stem cells in ependymomas from our atlas. Thus, we demonstrate spatiotemporal genetic regulation of human spinal cord development and its potential to understand novel disease mechanisms.
Project description:The goals of this study is to compare transcriptome profiles (RNA-seq) of zebrafish V2a interneurons with regrown axon and those without regrown axon in the spinal segments rostral to the lesion after spinal cord injury. For purification of V2a interneurons with regrown axon, the fluorescent tracer Rhodamine Dextran (RD) was retrogradely applied to Tg(Chx10:GFP) fish at three or eight weeks post injury. Spinal cord segments rostral to the lesion site was collected from 20 fish at 3- or 8 wpi, and corresponding spinal cord segments from 20 uninjured fish were collected as control material. GFP+/RD+ and GFP+/RD- cells were FAC-sorted and subjected to RNA-sequencing. Total RNA was isolated using SMART-SeqTM v4 UltraTM Low Input RNA Kit for Sequencing (Clontech). Sequencing libraries (N=5-6) were generated using NEBNext UltraTM RNA Library Prep Kit for Illumina following the manufacturer’s instructions (NEB). We mapped about 40-80 million sequence reads per sample to the zebrafish genome and identified 42,370 transcripts in the zebrafish V2a interneurons in the spinal cord. Our study represents the detailed analysis of transcriptomes of zebrafish V2a interneurons with regrown axon and those without regrown axon in the spinal segments rostral to the lesion after spinal cord injury.
Project description:Here we performed a ChIP-seq experiment for Tlx3 trancription factor on a sample of mouse embryonic dorsal spinal cord. The result is the generation of the genome-wide maps for Tlx3 binding to chromatin in dILB neurones of the developing dorsal horn.
Project description:Label-free mass spectrometry-based quantitative proteomics was applied to a larval zebrafish spinal cord injury model, which allows axon regeneration and functional recovery within two days (days post lesion; dpl) after a spinal cord transection in 3 day-old larvae (dpf). Proteomic profiling was performed of the lesion site at 1 dpl in control animals and animals with pdgfrb+ cell-specific overexpression of either zebrafish chondoradherin (chad; chad-mCherry fusion), fibromodulin a (fmoda; fmoda-mCherry fusion), lumican (lum; lum-mCherry fusion) or prolargin (prelp; prelp-mCherry fusion).