Project description:The purpose of the study is to identify Irr-responsive genes in the bacterium Bradyrhizobium japonicum. Parent strain LO was compared to irr mutant strain LODTM5 by whole genome microarray analysis. Both cell types were grown in iron-limited media. Keywords: Comparison of B. japonicum wild type and mutant cells
Project description:The purpose of the study is to identify iron-responsive genes in the bacterium Bradyrhizobium japonicum. Parent strain LO was grown under iron limitation or under iron sufficiency and compared to each other by whole genome microarray analysis. Keywords: Comparison of cells grown under low or high iron conditons
Project description:Clavibacter michiganensis subsp. michiganensis is an important Gram-positive phytopathogenic bacteria that causes bacterial wilt and canker in tomato. The genome of the type strain, NCPPB382, has been sequenced and annotated, however comparative genomics suggests that certain regions are under- or misannotated. In order to improve the genome annotation, we have undertaken a proteogenomic study of this important pathogen. Samples were grown in culture and the proteome of the pellet and supernatant were analyzed separately using shotgun HPLC-MS/MS. These proteomics datasets were analyzed and a number of missing gene were found and a number of existing gene calls were modified.
Project description:Gene content comparison of control C. jejuni subsp. jejuni strain 11168 which colonizes and causes disease in C57BL/6 IL-10-/- mice versus C. jejuni strains D6844, D6845, D6846, D6847, D6848, D6849, D0121, D0835, D2586, D2600,33560 and NW in the C57BL/6 IL-10-/- mice. Keywords: DNA/DNA comparison
Project description:Streptococcus gallolyticus subsp. gallolyticus is a commensal of the human gastrointestinal tract and a pathogen of infective endocarditis and other biofilm-associated infections with exposed collagen. Therefore, this study focuses on the characterization of the biofilm formation and collagen adhesion of S. gallolyticus subsp. gallolyticus under different conditions. It has been observed that lysozyme triggers biofilm formation divergently in the analyzed S. gallolyticus subsp. gallolyticus strains. The transcriptome analysis was performed for two strains which form more biofilm in the presence of lysozyme. Lysozyme leads to higher expression of genes of transcription and translation, of the dlt operon (cell wall modification), of hydrogen peroxide resistance proteins and of two immunity proteins which could be involved in biofilm formation. Furthermore, the adhesion ability of 73 different S. gallolyticus subsp. gallolyticus strains to collagen type I and IV was analyzed. High adhesion ability was observed for the strain UCN 34, whereas the strain DSM 16831 adhered only marginally to collagen. The full genome microarray analysis revealed strain-dependent gene expression due to adhesion. The expression of genes of a transposon and a phage region in strain DSM 16831 were increased, which corresponds to lateral gene transfer. Adherence to collagen leads to a change in the expression of genes of nutrients uptake in the strain UCN 34.
Project description:FabR ChIP-chip on Salmonella enterica subsp. enterica serovar Typhimurium SL1344 using anti-Myc antibody against strain with chromosomally 9Myc-tagged FabR (IP samples) and wildtype strain (mock IP samples)
Project description:Streptococcus gallolyticus subsp. gallolyticus is a commensal of the human gastrointestinal tract and a pathogen of infective endocarditis and other biofilm-associated infections with exposed collagen. Therefore, this study focuses on the characterization of the biofilm formation and collagen adhesion of S. gallolyticus subsp. gallolyticus under different conditions. It has been observed that lysozyme triggers biofilm formation divergently in the analyzed S. gallolyticus subsp. gallolyticus strains. The transcriptome analysis was performed for two strains which form more biofilm in the presence of lysozyme. Lysozyme leads to higher expression of genes of transcription and translation, of the dlt operon (cell wall modification), of hydrogen peroxide resistance proteins and of two immunity proteins which could be involved in biofilm formation. Furthermore, the adhesion ability of 73 different S. gallolyticus subsp. gallolyticus strains to collagen type I and IV was analyzed. High adhesion ability was observed for the strain UCN 34, whereas the strain DSM 16831 adhered only marginally to collagen. The full genome microarray analysis revealed strain-dependent gene expression due to adhesion. The expression of genes of a transposon and a phage region in strain DSM 16831 were increased, which corresponds to lateral gene transfer. Adherence to collagen leads to a change in the expression of genes of nutrients uptake in the strain UCN 34.