Project description:The present study was conducted to investigate the effect of graded levels of black soldier fly larvae (BSFL) (Hermetia illucens) meal and BSFL paste in extruded diets for Atlantic salmon (Salmo salar). A total of 1260 Atlantic salmon with 34 g of mean initial weight were randomly distributed into 21 fiberglass tanks and fed (n=3) with seven extruded isolipidic and isonitrogenous diets for seven weeks. The experimental diets consisted of a positive control diet based on fishmeal, soy protein concentrate, corn gluten, faba bean and fish oil (Control_1); three diets with increased levels of full lipid BSFL meal, substituting 6.25% (6.25_IM), 12.5% (12.5_IM) and 25% (25_IM) of the protein content of Control_1; two diets with increased levels of full lipid BSFL paste, substituting 3.7% (3.7_IP) and 6.7% (6.7_IP); and of protein from Control_1 and a negative a control with 0.84 % of formic acid (Control_2). We investigate the effect of diets on growth performance, mmune response and health.
Project description:Farmed Atlantic salmon was given either a 6 % cellulose diet, a diet containing 6 % shrimp shell chitin or a diet containing 6 % chitin from black soldier fly larvae for a period of 4 weeks. The fish were split into six tanks at the beginning of the experiment; six fish per tank and two tanks per diet. RNA from stomach and pyloric caeca from four fish given each diet was sequenced.
Project description:the original data of black soldier fly larva mass fermentation with Bacillus subtilis and Aspergillus niger, analyzed by Chinese biotechnology company, published by Chinese Academy of Tropical Agricultural Sciences Environment and Plant Protection Institute for research only.
Project description:Power of the crowd: substrate-dependent impact of black soldier fly larvae on bacterial community composition in substrate and larval gut
Project description:The larvae of black soldier fly (BSF) Hermetia illucens (Diptera: Stratiomyidae), has demonstrated ability in the efficient bioconversion of organic waste into a sustainable source of food and feed, but fundamental biology remains to be discovered to exploit their full biodegradative potential. Herein, LC-MS/MS was used to assess the efficiency of eight differing extraction protocols to build foundational knowledge regarding the proteome landscape of both BSF larvae body and gut. No specific protocol was superior in capturing the BSF body and gut proteome, but each yielded complementary information to improve BSF proteome coverage. Protocol-specific functional annotation using protein level information has shown that the selection of extraction buffer can affect protein detection and their associated functional classes within the measured BSF larval gut proteome. Metaproteome analysis on BSF larvae gut has uncovered the prevalence of two bacterial phyla: actinobacteria and proteobacteria. We envisage that comparing a range of extraction protocols and investigating the proteome from the BSF body and gut separately will expand the fundamental knowledge of the BSF proteome and thereby provide translational opportunities for future research to enhance their efficiency for waste degradation and contribution to the circular economy.