Project description:To clarify the profile of in BALF exosome collected from mice infected with influenza virus, we infected 100000 pfu of A/Puerto Rico/8/1934 (PR8) strain. BALF was collected at 24, 48, and 72 hour post infection (hpi). For comparison of the profile of the miRNA in BALF exosome induced by innate immune response, we also intranasally inoculated mice with 50 μg of poly(I:C) and collected BALF at 72 hour post inoculation. We found that some miRNAs were common to both influenza virus infectiona and poly(I:C) inoculation, suggesting that exosomal miRNAs in BALF may function in the innate immune response to virus infection.
Project description:Actinobacillus pleuropneumoniae is the etiologic agent of contagious pleuropneumonia, an economically important disease of commercially reared swine throughout the world. To cause this disease, A. pleuropneumoniae must rapidly overcome porcine pulmonary innate immune defenses. Since bronchoalveolar fluid (BALF) contains many of the innate immune components found in the lung, we examined the gene expression of a virulent serovar 1 strain of A. pleuropneumoniae after exposure to concentrated BALF. This experiment was also carried out with a malT mutant of the same strain.
Project description:Bronchoalveolar Lavage cells include resident and infiltrating immune cells in repsone to infections. We used single cell RNA sequencing (scRNA-seq) to analyze the diversity of BALF cells.
Project description:More than 70 million people worldwide are still infected with the hepatitis C virus 30 years after its discovery, underscoring the need for a vaccine. To develop an effective prophylactic vaccine, detailed knowledge of the correlates of protection and an immunocompetent surrogate model are needed. In this study, we describe the minimum dose required for robust equine hepacivirus (EqHV) infection in equids and examined how this relates to duration of infection, seroconversion, and transcriptomic responses. To investigate mechanisms of hepaciviral persistence, immune response, and immune- mediated pathology, we inoculated eight EqHV naive horses with doses ranging from 1 to 2 to 1.3 106 RNA copies per inoculation. We characterized infection kinetics, pathology, and transcriptomic responses via new generation sequencing. The minimal infec- tious dose of EqHV in horses was estimated at 13 RNA copies, whereas 6 to 7 copies were insufficient to cause infection. Peak viremia did not correlate with infectious dose, while seroconversion and duration of infection appeared to be affected. Notably, sero- conversion was undetectable in the low-dose infections within the surveillance period (40 to 50 days). In addition, transcriptomic analysis revealed a nearly dose dependent effect, with greater immune activation and inflammatory response observed in high-dose infections than in low-dose infections. Interestingly, inoculation with 6 to 7 copies of RNA that did not result in productive infection was associated with a strong immune response, similar to that observed in the high-dose infections. IMPORTANCE We demonstrated that the EqHV dose of infection plays an important role for inducing immune responses, possibly linked to early clearance in high-dose and prolonged viremia in low-dose infections. In particular, pathways associated with innate and adaptive immune responses, as well as inflammatory responses, were more strongly upregulated in high-dose infections than in lower doses. Hence, inoculation with low doses may enable EqHV to evade strong immune responses in the early phase and therefore promote robust, long-lasting infection.