Project description:Biological treatment of oily sludge wastes was studied using an isolated halo-tolerant strain Pseudomonas balearica strain Z8. An oily sludge sample was obtained from oil fields of south waste of Iran and was fully characterized. The initial TPH content was 44,500 mg kg-1. The ability of Pseudomonas balearica strain Z8 in production of biosurfactant was investigated using oil displacement method. Results demonstrated that isolated strain is a biosurfactant producing bacteria. The CMC and emulsification index [E24] of produced biosurfactant were 90 mg L-1 and 44% for crude oil. Effect of operational parameters including nitrogen source, sludge/water ratio and temperature were investigated against the time. The most TPH removal of 35% was observed for nitrogen source of NH4Cl, sludge/ water ratio of 1:7 and temperature of 40 °C.
Project description:Agrin isoforms with different bioactivities are synthesized by the nerve and the muscle. Neural agrin containing an 8-amino acid insert (z8) introduced by alternative splicing is the active form that induces synaptic differentiation at the neuromuscular junction. In addition to alternative splicing, extracellular calcium is also required for the activity of neural agrin. To understand better how the activity of agrin is regulated by alternative splicing, we have applied alanine substitution mutagenesis to the z8 insert and the calcium binding site in the minimally functional AgG3z8 fragment. Single alanine substitutions in the 4th through the 7th amino acid of the z8 splice insert significantly reduced the function of agrin, in terms of acetylcholine receptor clustering activity and the affinity for binding to the muscle surface. Mutation of the asparagine at the 4th position drastically reduces bioactivity such that it is equivalent to that of muscle form AgG3z0. These reduced activity mutants also show reduced magnitudes of the calcium-induced CD spectrum change from that observed in AgG3z8 fragments, indicating that cross-talk between calcium and the z8 insert is critical for the normal activity of agrin. However, removal of Ca(2+) binding via mutation of both aspartic acids in the calcium binding site did not totally eliminate the activity of AgG3z8. These results suggest a model wherein the z8 insert is a Ca(2+)-responsive allosteric element that is essential in forming an active conformation in neuronal agrin.
Project description:To identify the putative salivary tPA activator, we fractionated salivary proteins by size-exclusion chromatography and identified fraction Z8 as the strongest tPA activator, whereas the adjacent fractions Z7 and Z9 activated tPA at lower levels. Mass spectrometry analysis of these fractions identified a total of 152 unique proteins.