Project description:Our current knowledge of the different immune cells in neuroblastoma is based on in vitro and in vivo studies mainly focusing on a single cell type. Importantly, different studies have conveyed conflicting results. Moreover, a comprehensive immune cell overview at the single-cell level is still missing and understanding the complete immune cell composition of neuroblastoma will be crucial for the development of novel immunotherapeutics against the disease. In this study, we performed single-cell RNA-sequencing on nineteen human neuroblastoma samples coupled with multiplex immunohistochemistry and survival analysis using additional datasets to provide a comprehensive cellular and molecular immune cell landscape of human neuroblastoma. Further, we contrasted our data with single-cell RNA-sequencing data from normal fetal adrenal gland to characterize cell-state changes from normal tissue to cancerous neuroblastoma. Our analysis revealed 27 immune cell subtypes including distinct subpopulations of myeloid, NK, B and T cells not identified in neuroblastoma before. Several immune cell subtypes demonstrated a survival benefit such as inflammatory monocytes, tumor associated macrophages, various T cell populations, and Active NK cells. Furthermore, in contrast to adult cancers and previous neuroblastoma studies, we demonstrated an increase in inflammatory monocyte cell-state when contrasting normal and tumor tissue, while we do not observe differences in cytotoxicity and exhaustion score for cytotoxic T cells, nor in Treg activity. Finally, we performed a systemic receptor-ligand interaction analysis between tumor, stroma and immune cells, where we showed the neuroblastoma tumor microenvironment is highly complex and strongly correlated to survival. In addition, we highlighted several interactions that we suggest to be tested in future studies as a therapeutic option in human neuroblastoma. Taken together, our study significantly adds to the in depth understanding of the immune cell landscape, the complexity of the tumor microenvironment and it provides a resource for the development of novel immunotherapeutics for neuroblastoma.
Project description:Understanding the complete immune cell composition of human neuroblastoma (NB) is crucial for the development of immunotherapeutics. Here, we perform single-cell RNA sequencing (scRNA-seq) on 19 human NB samples coupled with multiplex immunohistochemistry, survival analysis, and comparison with normal fetal adrenal gland data. We provide a comprehensive immune cell landscape and characterize cell-state changes from normal tissue to NB. Our analysis reveals 27 immune cell subtypes, including distinct subpopulations of myeloid, NK, B, and T cells. Several different cell types demonstrate a survival benefit. In contrast to adult cancers and previous NB studies, we show an increase in inflammatory monocyte cell state when contrasting normal and tumor tissue, while no differences in cytotoxicity and exhaustion score for T cells, nor in Treg activity, are observed. Our receptor-ligand interaction analysis reveals a highly complex interactive network of the NB microenvironment from which we highlight several interactions that we suggest for future therapeutic studies.
Project description:Neuroblastoma is a rare embryonic tumor arising from neural crest development and is responsible for 15% of pediatric cancer-related deaths. Over the past years, several single-cell transcriptome studies were performed to investigate the cell-of-origin and tumor heterogeneity. These individual studies typically involved a limited number of neuroblastoma tumors. To overcome this limitation, we integrated seven single-cell or single-nucleus data sets into a harmonized cell atlas covering 362,991 cells across 68 patient samples. We use this integrated atlas to decipher the transcriptional tumoral landscape of neuroblastoma at single-cell resolution. Notably, within the tumor compartment, we find associations between transcriptomic profiles and clinical outcomes. In addition, we characterize the complex immune cell landscape of neuroblastoma and uncover considerable heterogeneity amongst tumor-associated macrophages. Finally, we showcase the utility of our atlas as a resource by expanding it with new data and using it as a reference for data-driven cell type prediction.
Project description:Multiple distinct cell types of the human lung and airways have been defined by single cell RNA sequencing (scRNAseq). Here we present a multi-omics spatial lung atlas to define novel cell types which we map back into the macro- and micro-anatomical tissue context to define functional tissue microenvironments. Firstly, we have generated single cell and nuclei RNA sequencing, VDJ-sequencing and Visium Spatial Transcriptomics data sets from 5 different locations of the human lung and airways. Secondly, we define additional cell types/states, as well as spatially map novel and known human airway cell types, such as adult lung chondrocytes, submucosal gland (SMG) duct cells, distinct pericyte and smooth muscle subtypes, immune-recruiting fibroblasts, peribronchial and perichondrial fibroblasts, peripheral nerve associated fibroblasts and Schwann cells. Finally, we define a survival niche for IgA-secreting plasma cells at the SMG, comprising the newly defined epithelial SMG-Duct cells, and B and T lineage immune cells. Using our transcriptomic data for cell-cell interaction analysis, we propose a signalling circuit that establishes and supports this niche. Overall, we provide a transcriptional and spatial lung atlas with multiple novel cell types that allows for the study of specific tissue microenvironments such as the newly defined gland-associated lymphoid niche (GALN).
Project description:Natural killer (NK) cells are leukocytes of the innate immune system and play a central role in the control of cancer metastases. NK cells and other innate immune cells often do not function well in patients with cancer and are also profoundly suppressed after cancer surgery. Dr. Auer’s Lab and others have shown that NK cells are critically important in the clearance of tumor metastases and that their impairment can be recovered with immune therapy augmenting the innate immune system. Several studies suggest that cancer patients have depressed NK cell cytotoxicity as compared to healthy controls but that following resection of the cancer, NK cell cytotoxicity returns to normal levels. In this observational study, the investigators will measure NK cell cytotoxicity by the gold standard method (51Cr, a chromium51 release assay) and by a new interferon-ɣ (IFN-ɣ) based assay (NK-Vue) in healthy humans and colorectal cancer (CRC) surgery patients seen a The Ottawa Hospital. The results of this study will determine if the NK-Vue is able to discriminate between healthy human volunteers and newly diagnosed cancer patients and is sufficiently sensitive to detect transient NK cell suppression immediately following surgery.
Project description:The tumor immune microenvironment is a main contributor to cancer progression and a promising therapeutic target for oncology. However, immune microenvironments vary profoundly between patients and biomarkers for prognosis and treatment response lack precision. A comprehensive compendium of tumor immune cells is required to pinpoint predictive cellular states and their spatial localization. We generated a single-cell resolved tumor immune cell atlas, jointly analyzing >500,000 cells from 217 patients and 13 cancer types, providing the basis for a patient stratification based on immune cell compositions. Projecting immune cells from external tumors onto the atlas facilitated an automated cell annotation system for a harmonized interpretation. To enable in situ mapping of immune populations for digital pathology, we developed SPOTlight, a computational tool that identified striking spatial immune cell patterns in tumor sections. We expect the atlas, together with our versatile toolbox for precision oncology, to advance currently applied stratification strategies for prognosis and immuno-therapy response.