Project description:We aimed to identify endotypes of pediatric acute respiratory distress syndrome (ARDS) using whole blood transcriptomics collected within 24 hours of Berlin ARDS onset in intubated children from CHOP Affy microarray and cluster analysis
Project description:MicroRNAs negatively regulate gene expression and may serve as biomarkers for human cardiomyopathy. In the domestic cat, hypertrophic cardiomyopathy (HCM) represents the most common primary cardiomyopathy. In humans, the etiology of HCM is linked to mutations in genes of contractile muscle proteins, while in cats a clear proof for causal mutations is missing. The etiology of feline HCM is uncertain. Diagnosis is made by heart ultrasound examination and measuring the serum level of N-terminal pro B-type natriuretic peptide. The purpose of this study was to investigate whether microRNA profiles in the serum of cats with HCM are different from the profiles of healthy cats and whether specific miRNAs can be detected to serve as potential biomarkers for feline HCM or may help in understanding the etiology of this disease Blood was drawn from two groups of cats: 12 healthy cats and 11 cats suffering from hypertrophic cardiomyopathy. After clotting, samples were centrifuged and total mRNA was extracted from serum. These 23 serum samples were analyzed and the groups were compared
Project description:BACKGROUND: MicroRNAs negatively regulate gene expression and play a pivotal role in the pathogenesis of human type 2 diabetes mellitus (T2DM). As the domestic cat presents a spontaneous animal model for human T2DM, the purpose of this study was to investigate whether microRNAs are detectable in feline serum and whether microRNA expression profiles differ between healthy and diabetic cats. METHODS: Total RNA was extracted from 400 M-BM-5l serum of healthy lean (HL) and newly diagnosed diabetic (D) cats. MicroRNA microarrays representing 1079 distinct mouse miRNA targets were used to measure miRNA expression in samples from eight HL and eight D cats. RESULTS: By microarray, 227 distinct microRNAs were identified. Nineteen miRNAs were differentially expressed in diabetic cats, but only two reached statistical significance after correction for multiple comparisons. In qRT-PCR, miR-122* was found to be upregulated in diabetic cats more than 40-fold compared to HL cats, while miR-193b was upregulated about 10-fold. MiR-483* showed a 6- fold increase in diabetic cats compared to HL cats. CONCLUSIONS: Small volumes of serum samples yield sufficient material to detect altered microRNA expression profiles in diabetic cats. The domestic cat may be considered a useful animal model for studying miRNAs involved in human T2DM. Blood was drawn from two groups of cats: 8 healthy cats and 8 cats suffering from diabetes. After clotting, samples were centrifuged and total mRNA was extracted from serum. These 16 serum samples were analyzed and the groups were compared. Due to technical problems during hybridization (leaking chamber), sample 1_4_B (Serum_diabetic_8) was not included into analysis.
Project description:BACKGROUND: MicroRNAs negatively regulate gene expression and play a pivotal role in the pathogenesis of human type 2 diabetes mellitus (T2DM). As the domestic cat presents a spontaneous animal model for human T2DM, the purpose of this study was to investigate whether microRNAs are detectable in feline serum and whether microRNA expression profiles differ between healthy and diabetic cats. METHODS: Total RNA was extracted from 400 µl serum of healthy lean (HL) and newly diagnosed diabetic (D) cats. MicroRNA microarrays representing 1079 distinct mouse miRNA targets were used to measure miRNA expression in samples from eight HL and eight D cats. RESULTS: By microarray, 227 distinct microRNAs were identified. Nineteen miRNAs were differentially expressed in diabetic cats, but only two reached statistical significance after correction for multiple comparisons. In qRT-PCR, miR-122* was found to be upregulated in diabetic cats more than 40-fold compared to HL cats, while miR-193b was upregulated about 10-fold. MiR-483* showed a 6- fold increase in diabetic cats compared to HL cats. CONCLUSIONS: Small volumes of serum samples yield sufficient material to detect altered microRNA expression profiles in diabetic cats. The domestic cat may be considered a useful animal model for studying miRNAs involved in human T2DM.
Project description:Pediatric patients survive from acute respiratory distress syndrome (ARDS) better than adults. However, immunological characteristics of lung tissue and peripheral circulation in pediatric ARDS has been scared. A 10-year-old girl suffered from ARDS was treated with anti-infection, anti-inflammatory regimen and with ECMO support. Air leak was fixed by surgery. Surgically dissected lung biopsies and peripheral blood cells (PBCs) were obtained from this patient and other control subjects for single cell RNA sequencing analysis. Pathological examination was also conducted on the lung biopsy. Out data revealed transcriptional characteristics of PBCs and lung microenvironment during ARDS recovery phase, and pointed out that efficient oxygen supply, appropriate immune regulation, and adequate anti-infection treatment favor for the recovery of children from ARDS.
Project description:The acute respiratory distress syndrome (ARDS) is a common complications of severe COVID-19 and contributes to patient morbidity and mortality. ARDS is a heterogeneous syndrome caused by various insults, and results in acute hypoxemic respiratory failure. Patients with ARDS from COVID-19 may represent a subgroup of ARDS patients with distinct molecular profiles that drive disease outcomes. Here, we hypothesized that longitudinal transcriptomic analysis may identify distinct dynamic pathobiological pathways during COVID-19 ARDS. We identified a patient cohort from an existing ICU biorepository and established three groups for comparison: 1) patients with COVID-19 ARDS that survived hospitalization (COVID survivors, n = 4), 2) patients with COVID-19 ARDS that did not survive hospitalization (COVID non-survivors, n = 5), and 3) patients with ARDS from other causes as a control group (ARDS controls, n = 4). RNA was extracted from peripheral blood mononuclear cells (PBMCs) at 4 time points (Days 1, 3, 7, and 10 following ICU admission) and prepared for RNA sequencing with rRNA depletion and library generation for Illumina. An Illumina NovaSeq X Plus instrument was used to generate 150 base pair paired-end reads, which were aligned to the hg GRCh38.96 reference genome using HiSAT2. Differential expression analysis was performed with DESeq2.
Project description:MicroRNAs negatively regulate gene expression and may serve as biomarkers for human cardiomyopathy. In the domestic cat, hypertrophic cardiomyopathy (HCM) represents the most common primary cardiomyopathy. In humans, the etiology of HCM is linked to mutations in genes of contractile muscle proteins, while in cats a clear proof for causal mutations is missing. The etiology of feline HCM is uncertain. Diagnosis is made by heart ultrasound examination and measuring the serum level of N-terminal pro B-type natriuretic peptide. The purpose of this study was to investigate whether microRNA profiles in the serum of cats with HCM are different from the profiles of healthy cats and whether specific miRNAs can be detected to serve as potential biomarkers for feline HCM or may help in understanding the etiology of this disease
Project description:This study used nasal transcriptomic profiling of the inferior turbinate in control and pediatric ARDS subjects to identify endotypes. This data set is for amplified specimens. The study identfied three pediatric ARDS endotypes.
Project description:Rat model of ARDS was induced by saline lavage and mechanical ventilation. miRNA from rat lungs were used for dual color DNA microarray hybridization with 3DNA 50 kit version 2. Two-condition experiment, CON vs. ARDS lung tissues. replicates: 6 control, 6 ARDS. One replicate per array.
Project description:This study used nasal transcriptomic profiling of the inferior turbinate in control and pediatric ARDS subjects to identify endotypes. This data set is for non-amplified specimens. The study identfied three pediatric ARDS endotypes.