Project description:Members of the serpin (serine protease inhibitor) superfamily have been identified in higher, multicellular eukaryotes, as well as in bacteria, although surveillance of available genome sequences indicates that bacterial serpin-encoding (ser) homologs are not widely distributed. In members of the genus Bifidobacterium this gene appears to be present in at least five, and perhaps up to nine, out of 30 species tested. Moreover, phylogenetic analysis using available bacterial and eukaryotic serpin sequences revealed that bifidobacteria specify serpins that form a separate clade. We characterized the ser210B locus of Bifidobacterium breve 210B, which consists of a number of genes, whose deduced protein products display significant similarity to proteins encoded by corresponding loci found in several other bifidobacteria. Northern hybridization, primer extension, micro array analysis, RT-PCR and Quantitative Real Time (qRT) - PCR analysis revealed that a 3.5 kb polycistronic mRNA, encompassing the ser210B operon with a single transcriptional start site, is strongly induced following treatment of B. breve 210B cultures with particular proteases. In contrast, transcription of the ser homolog of other bifidobacteria, such as Bifidobacterium longum subsp. infantis, Bifidobacterium dentium and B. longum subsp. longum, appears to be triggered by a different set of proteases Transcriptional response to protease treatments (kallikrein, papain and chymotrypsin) of Bifidobacterium breve 210B
Project description:This work aimed to investigate the ability of two human-derived bifidobacterial strains, i.e. Bifidobacterium breve UCC2003 and Bifidobacterium longum NCIMB 8809, to utilize various oligosaccharides (i.e., 4-galactosyl-kojibiose, lactulosucrose, lactosyl-oligofructosides, raffinosyl-oligofructosides and lactulose-derived galacto-oligosaccharides) synthesized by means of microbial glycoside hydrolases. With the exception of raffinosyl-oligofructosides, these biosynthetic oligosaccharides were shown to support growth of at least one of the two studied strains. Short-chain fatty acid (SCFA) analysis by HPLC corroborated the suitability of most of the studied novel oligosaccharides as growth substrates for the two bifidobacterial strains, showing that acetate is the main metabolic end product followed by lactic and formic acids. Transcriptomic and functional genomic approaches carried out for B. breve UCC2003 allowed the identification of key genes encoding glycoside hydrolases and protein transport systems involved in the metabolism of 4-galactosyl-kojibiose and lactulosucrose. In particular, the role of β-galactosidases in the hydrolysis of these particular trisaccharides was demonstrated, highlighting their importance in oligosaccharide metabolism by human bifidobacterial strains.
Project description:Members of the serpin (serine protease inhibitor) superfamily have been identified in higher, multicellular eukaryotes, as well as in bacteria, although surveillance of available genome sequences indicates that bacterial serpin-encoding (ser) homologs are not widely distributed. In members of the genus Bifidobacterium this gene appears to be present in at least five, and perhaps up to nine, out of 30 species tested. Moreover, phylogenetic analysis using available bacterial and eukaryotic serpin sequences revealed that bifidobacteria specify serpins that form a separate clade. We characterized the ser210B locus of Bifidobacterium breve 210B, which consists of a number of genes, whose deduced protein products display significant similarity to proteins encoded by corresponding loci found in several other bifidobacteria. Northern hybridization, primer extension, micro array analysis, RT-PCR and Quantitative Real Time (qRT) - PCR analysis revealed that a 3.5 kb polycistronic mRNA, encompassing the ser210B operon with a single transcriptional start site, is strongly induced following treatment of B. breve 210B cultures with particular proteases. In contrast, transcription of the ser homolog of other bifidobacteria, such as Bifidobacterium longum subsp. infantis, Bifidobacterium dentium and B. longum subsp. longum, appears to be triggered by a different set of proteases
Project description:Bifidobacterium longum subsp. infantis (B. infantis) colonizes the infant gut microbiome with a 43-kb gene cluster that enables human milk oligosaccharide (HMO) utilization. Although there is relative genomic homogeneity in this regard, previous observations suggest that B. infantis strains may differ in their utilization phenotype. To test this hypothesis, a panel of B. infantis strains were evaluated for their ability to utilize pooled HMOs to yield differential phenotypes including biomass accumulation, HMO consumption glycoprofile, end-product secretion, and global transcriptomes. Two strains (ATCC 15697 and UMA301) efficiently consumed several HMO isomers/anomers that exhibit degrees of polymerization (DP) ³ 4. These same strains partially consumed the smaller DP HMOs including fucosyllactose and lactodifucotetraose isomers/anomers. In contrast, UMA299 efficiently utilized fucosylated small molecular weight HMOs (DP<4), and accumulated greater biomass on purified 2´FL with significantly higher 1,2-propanediol production. This study identifies several strain-dependent features in HMO utilization phenotypes that are consistent with metabolic variation within a bifidobacterial-dominated infant-gut microbiome.