Project description:Antibiotic resistance associated with the expression of the clinically significant carbapenemases, IMP, KPC, and NDM and OXA-48 in Enterobacteriaceae is emerging as a worldwide calamity to health care. In Australia, IMP-producing Enterobacteriaceae is the most prevalent carbapenemase-producing Enterobacteriaceae (CPE). Genomic characteristics of such carbapenemase-producing Enterobacteriaceae (CPE) are well described, but the corresponding proteome is poorly characterised. We have thus developed a method to analyse dynamic changes in the proteome of CPE under antibiotic pressure. Specifically, we have investigated the effect of meropenem at sub-lethal concentrations to develop a better understanding of how antibiotic pressure leads to resistance. Escherichia coli, producing either NDM, IMP or KPC type carbapenemase were included in this study, and their proteomes were analysed in growth conditions with or without meropenem.
Project description:Background: This study aimed to explore potential tobramycin-resistant mutagenesis of Escherichia coli (E. coli) strains after spaceflight. Methods: A spaceflight-induced mutagenesis of multi-drug resistant E.coli strain (T1_13) on the outer space for 64 days (ST5), and a ground laboratory with the same conditions (GT5) were conducted. Both whole-genome sequencing and RNA-sequencing were performed. Results: A total of 75 SNPs and 20 InDels were found to be associated with the resistance mechanism. Compared to T1_13, 1242 genes were differentially expressed in more than 20 of 38 tobramycin-resistant E. coli isolates while not in GT5. Function annotation of these SNPs/InDels related genes and differentially expressed genes was performed. Conclusion: This study provided clues for potential tobramycin-resistant spaceflight-induced mutagenesis of E. coli.
Project description:PhoP is considered a regulator of virulence despite being conserved in both pathogenic and non-pathogenic Enterobacteriaceae. While Escherichia coli strains represent both non-pathogenic commensal isolates and numerous virulent pathotypes, the PhoP virulence regulator has only been studied in commensal E. coli. To better understand how conserved transcription factors contribute to virulence, we characterized PhoP in pathogenic E. coli. Loss of phoP significantly attenuated E. coli during extraintestinal infection. This was not surprising since we demonstrated that PhoP differentially regulated the transcription of >600 genes. In addition to survival at acidic pH and resistance to polymyxin B, PhoP was required for repression of motility and oxygen-independent changes in the expression of primary dehydrogenase and terminal reductase respiratory chain components. All phenotypes have in common a reliance on an energized membrane. Thus, we hypothesized that PhoP mediated these effects by regulating genes that generate a proton motive force. Indeed, bacteria lacking PhoP exhibited a hyper-polarized membrane, and dissipation of the transmembrane electrochemical gradient increased the susceptibility of the phoP mutant to acidic pH, while inhibiting respiratory generation of the proton gradient restored resistance to antimicrobial peptides independent of lipopolysaccharide modification. These findings demonstrate a connection between PhoP, virulence, and the energized state of the membrane.
Project description:This study aims to determine the epidemiology of Enterobacteriaceae resistant to antibiotics of last resort in pregnant women in labour at a tertiary hospital, Pretoria, South Africa. Rectal swabs shall be used to screen for colonisation with CRE and colistin-resistant Enterobacteriales in pregnant women during labour. Carbapenem and colistin-resistant Enterobacterales can cause the following infections: bacteraemia; nosocomial pneumonia; urinary tract infections, and intra-abdominal infections. Due to limited treatment options, infections caused by these multidrug-resistant organisms are associated with a mortality rate of 40-50%. Screening for colonisation of carbapenem-resistant Enterobacteriaceae (CRE) and colistin-resistant Enterobacteriaceae will help implement infection and prevention measures to limit the spread of these multidrug-resistant organisms.