Project description:Complements GSE56044 with 36 additional samples belonging to the large-cell carcinoma (LCC) and large-cell neuroendocrine (LCNEC) histologies. LCC classification is according to WHO 2004 guidelines. Genomic DNA from 36 lung cancer samples was treated with bisulfite and hybridized to Illumina methylation 450K arrays using standard protocols. Signal intensities were obtained from GenomeStudio (Illumina), converted to beta-values, filtered, and normalized to remove biases between Infinium I and II probes. Both raw intensity values, signal detection p-values and the final normalized data are included for each sample.
Project description:Lung cancer is the worldwide leading cause of death from cancer. DNA methylation in gene promoter regions is a major mechanism of gene expression regulation that may promote tumorigenesis. However, whether clinically relevant subgroups based on DNA methylation patterns exist in lung cancer is not well studied. We performed whole-genome methylation analysis using 450K Illumina BeadArrays on 124 tumors including 83 adenocarcinomas, 23 squamous cell carcinomas, one adenosquamous cancer, five large cell carcinomas, nine large cell neuroendocrine carcinomas (LCNEC), three small cell carcinomas (SCLC) and 12 normal lung tissues. Unsupervised class discovery was performed to identify DNA methylation subgroups with clinicopathological and molecular features. Subgroups were validated in two independent NSCLC cohorts. Unsupervised analysis identified five DNA methylation subgroups (epitypes). One epitype was distinctly associated with neuroendocrine tumors (LCNEC and SCLC). For adenocarcinoma, in both discovery and validation cohorts, remaining four epitypes were associated with differences in clinicopathological and molecular features, including global hypomethylation, promoter hypermethylation, copy number alterations, expression of proliferation-associated genes, association with unsupervised and supervised gene expression phenotypes, KRAS, TP53, KEAP1, SMARCA4, and STK11 mutations, smoking history, and patient outcome. Based on a multicohort approach we conducted a comprehensive survey of genome-wide DNA methylation in lung cancer, identifying a distinct neuroendocrine epitype and four adenocarcinoma epitypes associated with molecular and clinicopathological characteristics, and patient outcome. Our results bring further understanding of the epigenetic characteristics and molecular diversity in lung cancer generally and in adenocarcinoma specifically. Genome-wide DNA methylation analysis of 124 lung carcinomas and 12 normal lung tissues using Illumina Human Methylation 450K v1.0 Beadchips.
Project description:Lung cancer is the worldwide leading cause of death from cancer. DNA methylation in gene promoter regions is a major mechanism of gene expression regulation that may promote tumorigenesis. However, whether clinically relevant subgroups based on DNA methylation patterns exist in lung cancer is not well studied. We performed whole-genome methylation analysis using 450K Illumina BeadArrays on 124 tumors including 83 adenocarcinomas, 23 squamous cell carcinomas, one adenosquamous cancer, five large cell carcinomas, nine large cell neuroendocrine carcinomas (LCNEC), three small cell carcinomas (SCLC) and 12 normal lung tissues. Unsupervised class discovery was performed to identify DNA methylation subgroups with clinicopathological and molecular features. Subgroups were validated in two independent NSCLC cohorts. Unsupervised analysis identified five DNA methylation subgroups (epitypes). One epitype was distinctly associated with neuroendocrine tumors (LCNEC and SCLC). For adenocarcinoma, in both discovery and validation cohorts, remaining four epitypes were associated with differences in clinicopathological and molecular features, including global hypomethylation, promoter hypermethylation, copy number alterations, expression of proliferation-associated genes, association with unsupervised and supervised gene expression phenotypes, KRAS, TP53, KEAP1, SMARCA4, and STK11 mutations, smoking history, and patient outcome. Based on a multicohort approach we conducted a comprehensive survey of genome-wide DNA methylation in lung cancer, identifying a distinct neuroendocrine epitype and four adenocarcinoma epitypes associated with molecular and clinicopathological characteristics, and patient outcome. Our results bring further understanding of the epigenetic characteristics and molecular diversity in lung cancer generally and in adenocarcinoma specifically.
Project description:Lung cancer is the worldwide leading cause of death from cancer. DNA methylation in gene promoter regions is a major mechanism of gene expression regulation that may promote tumorigenesis. Experimental Design Whole-genome DNA methylation analysis using 450K Illumina BeadArrays was performed on 12 normal lung tissues and 124 tumors including 83 adenocarcinomas, 23 squamous cell carcinomas (SqCC), one adenosquamous cancer, five large cell carcinomas, nine large cell neuroendocrine carcinomas (LCNEC), and three small cell carcinomas (SCLC). Complimentary gene expression analyses was performed on 117 of the 124 tumors using Illumina HT12 V4 arrays (reported here). Gene expression profiling of 117 lung carcinomas using Illumina HT-12 V4 microarrays.
Project description:Lung cancer is the worldwide leading cause of death from cancer. DNA methylation in gene promoter regions is a major mechanism of gene expression regulation that may promote tumorigenesis. Experimental Design Whole-genome DNA methylation analysis using 450K Illumina BeadArrays was performed on 12 normal lung tissues and 124 tumors including 83 adenocarcinomas, 23 squamous cell carcinomas (SqCC), one adenosquamous cancer, five large cell carcinomas, nine large cell neuroendocrine carcinomas (LCNEC), and three small cell carcinomas (SCLC). Complimentary gene expression analyses was performed on 117 of the 124 tumors using Illumina HT12 V4 arrays (reported here).
Project description:Genome wide DNA methylation profiling of tumor and surrounding healthy colonic mucosa from patients with colorectal carcinoma. The Illumina Infinium 27k Human DNA methylation Beadchip v1.2 was used to obtain DNA methylation profiles across 27,578 CpG loci covering 14,475 genes.
Project description:Lung cancer is the worldwide leading cause of death from cancer. DNA methylation in gene promoter regions is a major mechanism of gene expression regulation that may promote tumorigenesis. Experimental Design Whole-genome DNA methylation analysis using 450K Illumina BeadArrays was performed on 12 normal lung tissues and 124 tumors including 83 adenocarcinomas, 23 squamous cell carcinomas (SqCC), one adenosquamous cancer, five large cell carcinomas, nine large cell neuroendocrine carcinomas (LCNEC), and three small cell carcinomas (SCLC). Complimentary gene expression analyses was performed on 117 of the 124 tumors using Illumina HT12 V4 arrays (reported here). Gene expression profiling of 117 lung carcinomas using Illumina HT-12 V4 microarrays.
Project description:Genome wide DNA methylation profiling of tumor and surrounding healthy colonic mucosa from patients with colorectal carcinoma. The Illumina Infinium 27k Human DNA methylation Beadchip v1.2 was used to obtain DNA methylation profiles across 27,578 CpG loci covering 14,475 genes. Samples included a total of 48 paired normal and tumor samples from 24 patients. The paired samples were put on the same chip.