Project description:Genome wide Methylation profiling of DNA extracted from plaques of atherosclerotic plaque samples (n=14) and of controls (n=4). The Illumina Infinium HumanMethylation450 or HumanMethylation850 BeadChip was used representing potentially methylated CpG sites throughout the genome.
Project description:We report differential DNA methylation results from human femoral atherosclerotic plaques compared to healthy mammary arteries. 5-methylcytosine containing DNA fragments are captured by methylcytosine binding domain - based MethylCapture assay. Captured fragments are sequenced using Illumina paired-end approach and mapped to human genome (hg19). Results. Hypomethylation of chromosomal DNA predominates in atherosclerotic plaques. Chr14q32.2 was identified for the first time as an extensively hypomethylated area in atherosclerosis with highly induced expression of miR127, -136, -410, -431, and -432
Project description:To investigate the expression profiles of miRNA in atherosclerotic plaques, the global features of miRNAs expression of three normal coronary artery tissues sample pools and three sample pools of advanced atherosclerosis plaques of coronary artery were studied using microarray technology,
Project description:We compared gene expression profiles between asymptomatic and symptomatic atherosclerotic plaques from the same patient. This was accomplished by analyzing carotid plaques from four patients with bilateral high-grade carotid artery stenoses one being symptomatic (TIA or stroke) and the other asymptomatic.
Project description:In order to identify potential new biomarkers of atherosclerotic plaque composition we performed a large scale analysis of gene expression patterns in human atherosclerotic lesions. Whole genome expression analysis of 101 peripheral plaques identified a robust gene signature (1514 genes) dominated by inflammatory processes, and cholesterol metabolism and storage genes. Specific pathways enriched in this signature included activation of the Toll-like receptor signaling pathway, T-cell activation, cholesterol efflux, oxidative stress response, inflammatory cytokine production, vasoconstriction and lysosomal activity. Analysis of gene expression in plaque micro-dissected material revealed that the signature is strongly up-regulated in macrophage-rich regions and down-regulated in regions with high smooth muscle cell content. A smaller qPCR biomarker panel and inflammatory composite score (ICS) were developed to facilitate clinical translation of discoveries from gene expression profiling. We found that ICS correlates with histological features related to plaque vulnerability. In addition, ICS is able to separate groups of plaques obtained from symptomatic and asymptomatic patients undergoing carotid endarerectomy. In summary, we identified a robust mRNA biomarker panel associated with histo-pathological as well as clinical hallmarks of vulnerable atherosclerotic plaque. This panel may be used as a diagnostic and prognostic tool in clinical setting to evaluate novel anti-atherosclerotic therapies. 290 human peripheral plaques were excised using the FoxHollow silverhawk catheter and stored in RNAlater. RNA was extracted, amplified and hybridized to Affymetrix/Merck custom 1.0 arrays (GPL10687).
Project description:In order to identify potential new biomarkers of atherosclerotic plaque composition we performed a large scale analysis of gene expression patterns in human atherosclerotic lesions. Whole genome expression analysis of 101 peripheral plaques identified a robust gene signature (1514 genes) dominated by inflammatory processes, and cholesterol metabolism and storage genes. Specific pathways enriched in this signature included activation of the Toll-like receptor signaling pathway, T-cell activation, cholesterol efflux, oxidative stress response, inflammatory cytokine production, vasoconstriction and lysosomal activity. Analysis of gene expression in plaque micro-dissected material revealed that the signature is strongly up-regulated in macrophage-rich regions and down-regulated in regions with high smooth muscle cell content. A smaller qPCR biomarker panel and inflammatory composite score (ICS) were developed to facilitate clinical translation of discoveries from gene expression profiling. We found that ICS correlates with histological features related to plaque vulnerability. In addition, ICS is able to separate groups of plaques obtained from symptomatic and asymptomatic patients undergoing carotid endarerectomy. In summary, we identified a robust mRNA biomarker panel associated with histo-pathological as well as clinical hallmarks of vulnerable atherosclerotic plaque. This panel may be used as a diagnostic and prognostic tool in clinical setting to evaluate novel anti-atherosclerotic therapies. Total RNA from peripheral plaque (n=101) profiled in the Merck/Agilent 44k v1.1 against a reference pool of total RNA from 7 carotid plaques.
Project description:Macrophages represent a major immune cell population in atherosclerotic plaques and play central role in the progression of this lipid-driven chronic inflammatory disease. Targeting immunometabolism is proposed as a strategy to revert aberrant macrophage activation to improve disease outcome. Here, we show ATP citrate lyase (Acly) to be activated in inflammatory macrophages and human atherosclerotic plaques. We demonstrate that myeloid Acly deficiency induces a stable plaque phenotype characterized by increased collagen deposition and fibrous cap thickness, along with a smaller necrotic core. In-depth functional, lipidomic, and transcriptional characterization indicate deregulated fatty acid and cholesterol biosynthesis and reduced liver X receptor (LXR) activation within the macrophages in vitro. This results in macrophages that are more prone to undergo apoptosis, whilst presenting increased phagocytosis of apoptotic cells. Together, our results indicate that targeting macrophage metabolism improves atherosclerosis outcome and we reveal Acly as a promising therapeutic target to stabilize atherosclerotic plaques.
Project description:Objective: Resident macrophages play an important role in atheromatous plaque rupture. The macrophage gene expression signature associated with plaque rupture is incompletely defined due to the complex cellular heterogeneity in the plaque. We aimed to characterise differential gene expression in resident plaque macrophages from ruptured and stable human atheromatous lesions. A cell-specific approach has the potential to address the question of gene expression differences between particular cell types in stable and unstable plaques with greater precision than approaches based on the study of whole plaques. Using laser micro-dissection, we isolated total RNA from macrophage-rich regions of stable and ruptured human atheromatous plaques derived from carotid endarterectomy samples which were comprehensively characterized using clinical, radiological and histological criteria, and carried out genome-wide gene expression profiling using microarrays. Results: The profiles were characteristic of activated macrophages. At a false discovery rate of 10%, 914 genes were differentially expressed between stable and ruptured plaques. The findings were confirmed in fourteen further stable and ruptured samples for a subset of eleven genes with the highest expression differences (p<0.05). Pathway analysis revealed that components of the PPAR/Adipocytokine signaling pathway were the most significantly upregulated in ruptured compared to stable plaques (p=5.4x10-7). Two key components of the pathway, fatty-acid binding-protein 4 (FABP4) and leptin, showed nine-fold (p=0.0086) and five-fold (p=0.0012) greater expression respectively in macrophages from ruptured plaques. Conclusions: We found differences in gene expression signatures between macrophages isolated from stable and ruptured human atheromatous plaques. Our findings indicate the involvement of FABP4 and leptin in the progression of atherosclerosis and plaque rupture, and suggest that down-regulation of PPAR/adipocytokine signaling within plaques may have therapeutic potential. Methods: We performed genome-wide expression analyses of isolated macrophage-rich regions of stable and ruptured human atherosclerotic plaques. Plaques present in carotid endarterectomy specimens were designated as stable or ruptured using clinical, radiological and histopathological criteria. Macrophage-rich regions were excised from 5 ruptured and 6 stable plaques by laser micro-dissection. Total RNA were subjected to two cycles of linear amplification. Transcriptional profiling was performed using Affymetrix HG-U133 plus 2.0 GeneChip arrays.
Project description:In order to identify potential new biomarkers of atherosclerotic plaque composition we performed a large scale analysis of gene expression patterns in human atherosclerotic lesions. Whole genome expression analysis of 101 peripheral plaques identified a robust gene signature (1514 genes) dominated by inflammatory processes, and cholesterol metabolism and storage genes. Specific pathways enriched in this signature included activation of the Toll-like receptor signaling pathway, T-cell activation, cholesterol efflux, oxidative stress response, inflammatory cytokine production, vasoconstriction and lysosomal activity. Analysis of gene expression in plaque micro-dissected material revealed that the signature is strongly up-regulated in macrophage-rich regions and down-regulated in regions with high smooth muscle cell content. A smaller qPCR biomarker panel and inflammatory composite score (ICS) were developed to facilitate clinical translation of discoveries from gene expression profiling. We found that ICS correlates with histological features related to plaque vulnerability. In addition, ICS is able to separate groups of plaques obtained from symptomatic and asymptomatic patients undergoing carotid endarerectomy. In summary, we identified a robust mRNA biomarker panel associated with histo-pathological as well as clinical hallmarks of vulnerable atherosclerotic plaque. This panel may be used as a diagnostic and prognostic tool in clinical setting to evaluate novel anti-atherosclerotic therapies.
Project description:In order to identify potential new biomarkers of atherosclerotic plaque composition we performed a large scale analysis of gene expression patterns in human atherosclerotic lesions. Whole genome expression analysis of 101 peripheral plaques identified a robust gene signature (1514 genes) dominated by inflammatory processes, and cholesterol metabolism and storage genes. Specific pathways enriched in this signature included activation of the Toll-like receptor signaling pathway, T-cell activation, cholesterol efflux, oxidative stress response, inflammatory cytokine production, vasoconstriction and lysosomal activity. Analysis of gene expression in plaque micro-dissected material revealed that the signature is strongly up-regulated in macrophage-rich regions and down-regulated in regions with high smooth muscle cell content. A smaller qPCR biomarker panel and inflammatory composite score (ICS) were developed to facilitate clinical translation of discoveries from gene expression profiling. We found that ICS correlates with histological features related to plaque vulnerability. In addition, ICS is able to separate groups of plaques obtained from symptomatic and asymptomatic patients undergoing carotid endarerectomy. In summary, we identified a robust mRNA biomarker panel associated with histo-pathological as well as clinical hallmarks of vulnerable atherosclerotic plaque. This panel may be used as a diagnostic and prognostic tool in clinical setting to evaluate novel anti-atherosclerotic therapies.