Project description:Schizophrenia (SZ) and bipolar disorder (BD) are severe psychiatric conditions, with a lifetime prevalence of about 1%. Both disorders have a neurodevelopment component, with onset of symptoms occurring most frequently during late adolescence or early adulthood. Genetic findings indicate the existence of an overlap in genetic susceptibility across the disorders. These gene expression profiles were used to identify the molecular mechanisms that differentiate SZ and BP from healthy controls but also that distinguish both from healthy individuals. They were also used to expand an analysis from an experiment that searched molecular alterations in human induced pluripotent stem cells derived from fibroblasts from control subject and individual with schizophrenia and further differentiated to neuron to identify genes relevant for the development of schizophrenia (GSE62105). Brain tissue (frontal cortex) from 30 healthy controls, 29 bipolar disorder patients and 29 schizophrenia patients were analyzed. The reference is an in-house pool of RNA extracted from 15 human cell lines.
Project description:We fine-mapped DNA methylation in neuronal nuclei (NeuN+) isolated by flow cytometry from post-mortem frontal cortex of the brain of individuals diagnosed with schizophrenia, bipolar disorder, and controls (n=29, 26, and 28 individuals).
Project description:Purpose of study is revealing significant differences in serum proteomes in schizophrenia, bipolar disorder (BD), and matched healthy controls. The sample preparation included affinity removing of six major proteins, separation by 1D electrophoresis, in-gel tryptic hydrolysis, and LC-MS/MS peptide analysis using LTQ Orbitrap Velos mass spectrometer. When comparing proteome profiles, different unique protein sets were revealed (absent in other groups): 22 proteins typical for schizophrenia, and 20 – for BD. Protein set in schizophrenia was mostly associated with nucleic acid and protein metabolism, immune response, cell communication, and cell growth and maintenance. Protein set in BD was mostly associated with cell growth and maintenance, nucleic acid metabolism regulation, immune response, protein metabolism, transport and cell communication. Concentrations of ankyrin repeat domain-containing protein 12 (ANKRD12), coagulation factor XIII, and cadherin 5 in serum samples were determined by ELISA. Significant difference between three groups was revealed in ANKRD12 concentration (p=0.02), with maximum elevation of ANKRD12 concentration (median level) in schizophrenia followed by BD. Cadherin 5 concentration differed significantly (p=0.035) between schizophrenic patients with prevailing positive symptoms (4.78 [2.71;7.12] ng/ml) and those with prevailing negative symptoms (1.86 [0.001;4.11] ng/ml). Our results are presumably useful for discovering the new pathways involved in endogenous psychotic disorders.
Project description:We fine-mapped DNA methylation in neuronal nuclei (NeuN+) isolated by flow cytometry from post-mortem frontal cortex of the brain of individuals diagnosed with schizophrenia, bipolar disorder, and controls (n=29, 26, and 27 individuals).
Project description:We fine-mapped DNA methylation in neuronal nuclei (NeuN+) isolated by flow cytometry from post-mortem frontal cortex of the brain of individuals diagnosed with schizophrenia, bipolar disorder, and controls (n=29, 26, and 28 individuals).
Project description:Schizophrenia (SZ) and bipolar disorder (BD) are severe psychiatric conditions, with a lifetime prevalence of about 1%. Both disorders have a neurodevelopment component, with onset of symptoms occurring most frequently during late adolescence or early adulthood. Genetic findings indicate the existence of an overlap in genetic susceptibility across the disorders. These gene expression profiles were used to identify the molecular mechanisms that differentiate SZ and BP from healthy controls but also that distinguish both from healthy individuals. They were also used to expand an analysis from an experiment that searched molecular alterations in human induced pluripotent stem cells derived from fibroblasts from control subject and individual with schizophrenia and further differentiated to neuron to identify genes relevant for the development of schizophrenia (GSE62105).
Project description:Schizophrenia is a complex psychiatric disorder encompassing a range of symptoms and etiology dependent upon the interaction of genetic and environmental factors. Several risk genes, such as DISC1, have been associated with schizophrenia as well as bipolar disorder (BPD) and major depressive disorder (MDD), consistent with the hypothesis that a shared genetic architecture could contribute to divergent clinical syndromes. The present study compared gene expression profiles across three brain regions in post-mortem tissue from matched subjects with schizophrenia, BPD or MDD and unaffected controls. Post-mortem brain tissue was collected from control subjects and well-matched subjects with schizophrenia, BPD, and MDD (n=19 from each group). RNA was isolated from hippocampus, Brodmann Area 46, and associative striatum and hybridized to U133_Plus2 Affymetrix chips. Data were normalized by RMA, subjected to pairwise comparison followed by Benjamini and Hochberg False Discovery Rate correction (FDR). Samples derived from patients with schizophrenia exhibited many more changes in gene expression across all brain regions than observed in BPD or MDD. Several genes showed changes in both schizophrenia and BPD, though the magnitude of change was usually larger in schizophrenia. Several genes that have variants associated with schizophrenia were found to have altered expression in multiple regions of brains from subjects with schizophrenia. Continued evaluation of circuit-level alterations in gene expression and gene-network relationships may further our understanding of how genetic variants may be influencing biological processes to contribute to psychiatric disease. Pre-frontal cortex, striatum and hippocampus were obtained from subjects with schizophrenia, bipolar disorder, major depressive disorder and matched controls.