Project description:Here, we used reverse-phase liquid chromatography-coupled tandem mass spectrometry to study the pre-weaned lamb proteome and metaproteome in ten different gastrointestinal tracts: rumen, reticulum, omasum, abomasum, duodenum, jejunum, ileum, cecum, colon, and rectum.
Project description:Emerging data has highlighted the importance of short-chain fatty acids (SCFAs), particularly butyrate, in regulating ruminal homeostasis in vivo isolated epithelial cells. However, little is known about other SCFAs like acetate or propionate, and the interaction between rumen microbes and epithelial immunity are rarely reported. Here, we firstly combined infusion of three SCFAs, to study their different roles in ruminal development, antioxidant capacity, barrier functions, and immunity, as well as cross-talk with ruminal microbiome (16S rRNA sequencing data of rumen digesta) and derived transcriptome (RNA-Seq) and metabolism using an in vivo goat model.
Project description:Emerging data has highlighted the importance of short-chain fatty acids (SCFAs), particularly butyrate, in regulating ruminal homeostasis in vivo isolated epithelial cells. However, little is known about other SCFAs like acetate or propionate, and the interaction between rumen microbes and epithelial immunity are rarely reported. Here, we firstly combined infusion of three SCFAs, to study their different roles in ruminal development, antioxidant capacity, barrier functions, and immunity, as well as cross-talk with ruminal microbiome (16S rRNA sequencing data of rumen digesta) and derived transcriptome (RNA-Seq) and metabolism using an in vivo goat model.