Project description:To investigate the effect of PD-1 expression on gene expression, we have employed whole genome microarray expression profiling as a discovery platform to identify genes related to the cell proliferation of human B-cell lymphoma (HBCL) cell line VAL in vitro.
Project description:Chemotaxis is an essential physiological process, often harnessed by tumors for metastasis. CXCR4, its ligand CXCL12 and the atypical receptor ACKR3 are overexpressed in many human cancers. Interfering with this axis by ACKR3 deletion impairs lymphoma cell migration towards CXCL12. Here, we propose a model of how ACKR3 controls the migration of the diffused large B-cell lymphoma VAL cells in vitro and in vivo in response to CXCL12. VAL cells expressing full-length ACKR3, but not a truncated version missing the C-terminus, can support the migration of VAL cells lacking ACKR3 (VAL-ko) when allowed to migrate together. This migration of VAL-ko cells is pertussis toxin-sensitive suggesting the involvement of a Gi-protein coupled receptor. RNAseq analysis indicate the expression of chemotaxis-mediating LTB4 receptors in VAL cells. We found that LTB4 acts synergistically with CXCL12 in stimulating the migration of VAL cells. Pharmacologic or genetic inhibition of BLT1R markedly reduces chemotaxis towards CXCL12 suggesting that LTB4 enhances in a contact-independent manner the migration of lymphoma cells. The results unveil a novel mechanism of cell-to-cell-induced migration of lymphoma.
Project description:We report the application of RNA-seq for profiling gene transcription upon treatment of dipeptidyl peptidases 8 and 9 inhibitor, Val-boroPro (VbP). We find no significant changes in gene transcription upon treatment of mammalian cells with Val-boroPro.
Project description:tRNA-derived fragments (tRFs) play critical roles in cellular process, and we have previously reported that tRFs are involved in ischemia reperfusion injury induced acute kidney injury (IRI-AKI). However, the precise involvement of tRFs in IRI-AKI remains obscure. This study aims to elucidate the impact of tRF-Val-TAC-004 (tRF-Val) on IRI-AKI and uncover the underlying mechanisms. Our observations reveal a significant downregulation of tRF-Val in IRI-AKI mice and its overexpression mitigated renal dysfunction, morphological damage, and apoptosis in IRI-AKI mice, while its inhibition exacerbated these effects. Similar outcomes were replicated in CoCl2-treated BUMPT cells upon transfection with tRF-Val mimic or inhibitor. Mechanistically, dual-luciferase reporter assay and AGO-RIP qPCR analyses demonstrated that tRF-Val suppresses Apaf1 expression by targeting the 3’-UTR of Apaf1 mRNA. Furthermore, the protective efficacy of tRF-Val was notably weakened by Apaf1-overexpressing plasmids. In summary, these novel findings unveil the protective role of tRF-Val against IRI-AKI through inhibition of Apaf1-mediated apoptosis.
Project description:NK-cell lymphoma shares strikingly similar molecular features with a distinct subset of gamma-delta T-cell lymphoma. Gene expression profiling of NK-cell lymphoma patient samples was performed to investigate whether molecular signatures can be used to identify entities of peripheral T-cell lymphoma (PTCL) with NK-cell-like features.
Project description:Molecular signatures to improve diagnosis in PTCL and prognostication in angioimmunoblastic T-cell lymphoma (AITL). Gene expression profiling of PTCL patient samples was performed to investigate whether molecular signatures can be used to identify distinct entities of PTCL.