Project description:Many pediatric malignancies are embryonal in nature, and one hypothesis for the origin of embryonal tumors is that they arise from a defect in differentiation, either by an inability to terminally differentiate or a reversion to a pluripotent state. There is emerging evidence that epigenetic regulation plays an important role in the transition from embryonic stem cell to a more committed cell fate, utilizing both de novo DNA methylation and poised M-bM-^@M-^XbivalentM-bM-^@M-^Y chromatin domains (H3K27me3 and H3K4me3) to abolish pluripotency and gain lineage- and cell-type-specific characteristics as a cell differentiates. Thus inappropriate epigenetic silencing by aberrant DNA methylation of bivalent genes required for differentiation could lead to the uncontrolled cell growth observed in cancer. Our broad hypothesis is that aberrant DNA methylation in cancer is targeted to a non-random subset of critical pathways used in normal development. This dysregulation of the normal epigenetic program used in development promotes cellular proliferation and provides a mechanism to block differentiation in pediatric cancers, such as rhabdomyosarcoma. Examination of DNA methylation in fourteen human rhabdomyosarcoma patient samples using RRBS. In addition, RRBS was used to examine DNA methylation in one human rhabdomyosarcoma cell line (RD) forced to terminally differentiate by expression of the forced heterodimer MyoD~E12 (MDE). Lastly, RRBS was used to examine DNA methylation changes during normal differentiation in one primary human normal myoblast cell line
Project description:In order to identify the specific DNA methylation pattern of different rhabdomyosarcoma (RMS) samples we performed a genome-wide study using Human DNA methylation platform (Agilent).
Project description:In order to identify the specific DNA methylation pattern of different rhabdomyosarcoma (RMS) samples we performed a genome-wide study using Human DNA methylation platform (Agilent). DNA methylation profiling was carried out in 15 RMS tumor samples using the Human DNA methylation microarray (Agilent) consisting of about 244,000 (60-mer) probes design to interrogate about 27,000 known CpG islands. Enriched-methylated dsDNA for each sample was labeled with Cy5 dye and the control genomic DNA for each sample was labeled with Cy3 dye using Agilent Genomic DNA labeling kit PLUS (Agilent).
Project description:Many pediatric malignancies are embryonal in nature, and one hypothesis for the origin of embryonal tumors is that they arise from a defect in differentiation, either by an inability to terminally differentiate or a reversion to a pluripotent state. There is emerging evidence that epigenetic regulation plays an important role in the transition from embryonic stem cell to a more committed cell fate, utilizing both de novo DNA methylation and poised ‘bivalent’ chromatin domains (H3K27me3 and H3K4me3) to abolish pluripotency and gain lineage- and cell-type-specific characteristics as a cell differentiates. Thus inappropriate epigenetic silencing by aberrant DNA methylation of bivalent genes required for differentiation could lead to the uncontrolled cell growth observed in cancer. Our broad hypothesis is that aberrant DNA methylation in cancer is targeted to a non-random subset of critical pathways used in normal development. This dysregulation of the normal epigenetic program used in development promotes cellular proliferation and provides a mechanism to block differentiation in pediatric cancers, such as rhabdomyosarcoma.
Project description:Rhabdomyosarcomas (RMS) represent a family of aggressive soft tissue sarcomas that present in both the pediatric and adult setting. Pathologic risk stratification for RMS has been based on histologic subtype, with poor outcomes observed in alveolar rhabdomyosarcoma (ARMS) and adult-type pleomorphic rhabdomyosarcoma (PRMS) compared to embryonal rhabdomyosarcoma (ERMS). Recent genomic sequencing studies have expanded the spectrum of RMS, with several new molecularly defined entities, including fusion-driven spindle cell/sclerosing rhabdomyosarcoma (SC/SRMS) and MYOD1-mutant SC/SRMS. Comprehensive genomic analysis has previously defined the mutational and copy number spectrum for the more common ERMS and ARMS, as well as revealed corresponding methylation signatures. In contrast, genetic and epigenetic correlates have not been defined for the rare SC/SRMS or PRMS histologic subtypes. Herein, we present genomic sequencing, copy number analysis, and methylation profiling of the largest cohort of molecularly characterized RMS samples to date. We identified two novel methylation subtypes, one having SC/SRMS histology and defined by MYOD1 p. L122R mutations and the other matching adult type PRMS. Selected tumors from adolescent patients grouped with the PRMS methylation class, expanding the age range of these rare tumors. Pediatric patients in the MYOD1-mutant group, as well as those clustering with PRMS, appear to have poor overall survival.
Project description:Osteosarcoma (OS) and Ewing’s sarcoma (EW) are the two most common pediatric solid tumors, after brain tumors. Multimodal treatments have significantly improved prognosis in localized disease but outcome is still poor in metastatic patients, for whom therapeutic options are often inadequate. Preclinical drug testing to identify promising treatment options that match the molecular make-up of these tumors is hampered by the lack of appropriate and molecularly well-characterized patient-derived models. To address this need, a panel of patient-derived xenografts (PDX) was established by subcutaneous implantation of fresh, surgically resected OS and EW tumors in NSG mice. Tumors were re-transplanted to next mice generations and fragments were collected for histopathological and molecular characterization. A model was considered established after observing stable histological and molecular features for at least three passages. To evaluate the similarity of the model with primary tumor, we performed a global gene expression profiling and tissue microarrays (TMA), to assess tumor specific biomarkers on tissues from OS/EW tumors and their PDXs (1st and 3rd passage). Moreover, we verified the feasibility of these models for preclinical drug testing. We implanted 61 OS and 29 EW samples: 14/38 (37%) primary OS and 9/23 (39%) OS lung metastases successfully engrafted; while among EW, 5/26 (19%) primary samples and 1/3 (33%) metastases were established. Comparison between patient samples and PDXs, highlighted that histology and genetic characteristics of PDXs were stable and maintained over passages. In particular, correlative analysis between OS and EW samples and their PDXs was extremely high (Pearson’s r range r=0.94-0.96), while patient-derived primary cultures displayed reduced correlation with human samples (r=0.90-0.93), indicating that in vitro adaptation superimpose molecular alterations that create genetic diversion from original tumors. No significant differentially expressed gene profile was observed from the comparison between EW samples and PDXs (fold change > 2, adjusted p <0.05 at paired t-test). In OS, the comparison between OS patient-derived tumors and PDX indicated differences in 397 genes, mostly belonging to immune system functional category. This is in line with the idea that human immune cells are gradually replaced by murine counterparts upon engraftment in the mouse. As proof-of concept, two EW PDX and one OS PDX have been treated with conventional and innovated drugs to test their value in terms of drug-sensitivity prediction. Overall, our study indicated that PDX models maintained the histological and genetic markers of the tumor samples and represent reliable models to test sensitivity to novel drug associations.
Project description:A significant proportion of patients with oestrogen receptor (ER) positive breast cancers (BC) develop resistance to endocrine treatments (ET) and relapse with metastatic disease. Bone is the most common metastatic site in ER+ patients, however bone metastases are technically challenging to biopsy and analyse. Difficulties concern both tumour tissue acquisition and techniques for analysis and RNA extractions. Patient-derived xenografts (PDX) of BC bone metastases have not been reported yet. For the first time we established PDX models from bone metastatic biopsies of patients progressing on ET and treated by vertebroplasty. PDX models were analysed at transcriptomic level and compared to patient’s early primary tumours to identify new therapeutic targets associated with endocrine resistance in the metastatic setting. Identification of activated signalling pathways in bone metastasis by comparative transcriptomic analyses of the bone metastasis derived PDX compared to the patients' primary breast tumor.