Project description:Single-cell transcriptomics analysis of human knee articular cartilage tissue to present a comprehensive transcriptome atlas and osteoarthritis-critical cell populations.
Project description:Single-nucleus RNA sequencing (snRNA-seq) was used to profile the transcriptome of 16,015 nuclei in human adult testis. This dataset includes five samples from two different individuals. This dataset is part of a larger evolutionary study of adult testis at the single-nucleus level (97,521 single-nuclei in total) across mammals including 10 representatives of the three main mammalian lineages: human, chimpanzee, bonobo, gorilla, gibbon, rhesus macaque, marmoset, mouse (placental mammals); grey short-tailed opossum (marsupials); and platypus (egg-laying monotremes). Corresponding data were generated for a bird (red junglefowl, the progenitor of domestic chicken), to be used as an evolutionary outgroup.
Project description:We have sequenced miRNA libraries from human embryonic, neural and foetal mesenchymal stem cells. We report that the majority of miRNA genes encode mature isomers that vary in size by one or more bases at the 3’ and/or 5’ end of the miRNA. Northern blotting for individual miRNAs showed that the proportions of isomiRs expressed by a single miRNA gene often differ between cell and tissue types. IsomiRs were readily co-immunoprecipitated with Argonaute proteins in vivo and were active in luciferase assays, indicating that they are functional. Bioinformatics analysis predicts substantial differences in targeting between miRNAs with minor 5’ differences and in support of this we report that a 5’ isomiR-9-1 gained the ability to inhibit the expression of DNMT3B and NCAM2 but lost the ability to inhibit CDH1 in vitro. This result was confirmed by the use of isomiR-specific sponges. Our analysis of the miRGator database indicates that a small percentage of human miRNA genes express isomiRs as the dominant transcript in certain cell types and analysis of miRBase shows that 5’ isomiRs have replaced canonical miRNAs many times during evolution. This strongly indicates that isomiRs are of functional importance and have contributed to the evolution of miRNA genes
Project description:Background: Meniscus tears are the most common injury in the knee and are associated with an increased risk of osteoarthritis (OA). The molecular profile of knees with meniscus tears is not well-studied. Therefore, to advance our understanding of the early response of the knee to injury, we compared the gene expression profile of meniscus and articular cartilage within the same knees following meniscus injury. Hypothesis/Purpose: To identify differences between the molecular signatures of meniscus and articular cartilage from knees with intact articular cartilage undergoing arthroscopic partial meniscectomy. Study Design: Descriptive laboratory study Methods: Patients (n=12) with a known isolated medial meniscus tear without any knee chondrosis or radiographic OA were consented prior to surgery. During arthroscopic partial meniscectomy, a sample of their injured meniscus and a sample of their articular cartilage off the medial femoral condyle were procured. The transcriptome signatures, as measured through Affymetrix microarray, were compared between the two tissues and underlying biological processes were explored computationally. Results: 3566 gene transcripts were differentially expressed between meniscus and articular cartilage. Gene transcripts down-regulated in articular cartilage were associated with extracellular matrix organization, wound healing, cell adhesion, and chemotaxis. Gene transcripts up-regulated in articular cartilage were associated with blood vessels morphogenesis and angiogenesis. Examples of individual genes with significant differences in expression between the two tissues include IBSP (23.76 fold; P < 0.001), upregulated in meniscus, and TREM1 (3.23 fold; P = 0.006), upregulated in meniscus. Conclusion: The meniscus and articular cartilage have distinct gene expression profiles in knees with meniscus tears and intact articular cartilage. Total RNA obtained from injured meniscus and normal articular cartilage from patients undergoing partial meniscectomy.
Project description:The isolation of chondrocytes from human articular cartilage for single-cell RNA sequencing requires extensive and prolonged tissue digestion at 37 °C. Modulations of the transcriptional activity likely take place during this period such that the transcriptomes of isolated human chondrocytes no longer match their original status in vivo. Here, we optimized the human chondrocyte isolation procedure to maximally preserve the in vivo transcriptome.
Project description:The isolation of chondrocytes from human articular cartilage for single-cell RNA sequencing requires extensive and prolonged tissue digestion at 37 °C. Modulations of the transcriptional activity likely take place during this period such that the transcriptomes of isolated human chondrocytes no longer match their original status in vivo. Here, we optimized the human chondrocyte isolation procedure to maximally preserve the in vivo transcriptome.
Project description:The pathogenesis of necrosis of femoral head (NFH) remains elusive now. Limited studies were conducted to investigate the molecular mechanism of hip articular cartilage damage of NFH. We conducted a genome-wide gene expression profiling of hip articular cartilage with NFH. Hip articular cartilage specimens were collected from 12 NFH patients and 12 healthy controls. Gene expression profiling of NFH articular cartilage was carried out by Agilent Human 4x44K Gene Expression Microarray chip. Differently expressed genes were identified using the Significance Analysis of Microarrays (SAM) software.
Project description:We have sequenced miRNA libraries from human embryonic, neural and foetal mesenchymal stem cells. We report that the majority of miRNA genes encode mature isomers that vary in size by one or more bases at the 3’ and/or 5’ end of the miRNA. Northern blotting for individual miRNAs showed that the proportions of isomiRs expressed by a single miRNA gene often differ between cell and tissue types. IsomiRs were readily co-immunoprecipitated with Argonaute proteins in vivo and were active in luciferase assays, indicating that they are functional. Bioinformatics analysis predicts substantial differences in targeting between miRNAs with minor 5’ differences and in support of this we report that a 5’ isomiR-9-1 gained the ability to inhibit the expression of DNMT3B and NCAM2 but lost the ability to inhibit CDH1 in vitro. This result was confirmed by the use of isomiR-specific sponges. Our analysis of the miRGator database indicates that a small percentage of human miRNA genes express isomiRs as the dominant transcript in certain cell types and analysis of miRBase shows that 5’ isomiRs have replaced canonical miRNAs many times during evolution. This strongly indicates that isomiRs are of functional importance and have contributed to the evolution of miRNA genes Sequence library of miRNAs from a single sample of human foetal mesenchymal stem cells. Results tested and confirmed by northern blotting. Please note that only raw data files are available for the embryonic and neual samples and thus, directly submitted to SRA (SRX547311, SRX548700, respectively under SRP042115/PRJNA247767)