Project description:Background: Patients with small intestinal neuroendocrine tumors (SINETs) frequently present with lymph node and liver metastases at the time of diagnosis, but the molecular changes that lead to the progression of these tumors are largely unknown. Sequencing studies have only identified recurrent point mutations in a single gene, CDKN1B, with heterozygous mutations in less than 10% of all tumors. Although SINETs are genetically stable tumors with a low frequency of point mutations and indels, they often harbor recurrent hemizygous copy number alterations (CNAs) yet the functional implications of these CNA are unclear. Methods: Utilizing comparative genomic hybridization (CGH) arrays we analyzed the CNA profile of 131 SINETs from 117 patients. Two tumor suppressor genes and corresponding proteins i.e. SMAD4, and CDKN1B, were further characterized using a tissue microarray (TMA) with 846 SINETs. Immunohistochemistry (IHC) was used to quantify protein expression in TMA samples and this was correlated with chromosome number evaluated with fluorescent in-situ hybridization (FISH). Intestinal tissue from a Smad4+/- mouse model was used to detect entero-endocrine cell hyperplasia with IHC. Results: Analyzing the CGH arrays we found loss of chromosome 18q and SMAD4 in 71% of SINETs and that focal loss of chromosome 12 affecting the CDKN1B was present in 9.4% of SINETs. No homozygous loss of chromosome 18 was detected. Hemizygous loss of SMAD4, but not CDKN1B, significantly correlated with reduced protein levels but hemizygous loss of SMAD4 did not induce entero-endocrine cell hyperplasia in the Smad4+/- mouse model. Conclusions: Hemizygous loss of chromosome 18q and the SMAD4 gene is the most common genetic event in SINETs and our results suggests that this could influence SMAD4 protein expression. Although SMAD4 haploinsufficiency alone did not induce tumor initiation, loss of chromosome 18 could represent an evolutionary advantage in SINETs explaining the high prevalence of this aberration. Functional consequences of reduced SMAD4 protein levels could hypothetically be a potential mechanism as to why loss of chromosome 18 appears to be clonally selected in SINETs.
Project description:BackgroundPatients with small intestinal neuroendocrine tumors (SINETs) frequently present with lymph node and liver metastases at the time of diagnosis, but the molecular changes that lead to the progression of these tumors are largely unknown. Sequencing studies have only identified recurrent point mutations at low frequencies with CDKN1B being the most common harboring heterozygous mutations in less than 10% of all tumors. Although SINETs are genetically stable tumors with a low frequency of point mutations and indels, they often harbor recurrent hemizygous copy number alterations (CNAs) yet the functional implications of these CNA are unclear.MethodsUtilizing comparative genomic hybridization (CGH) arrays we analyzed the CNA profile of 131 SINETs from 117 patients. Two tumor suppressor genes and corresponding proteins i.e. SMAD4, and CDKN1B, were further characterized using a tissue microarray (TMA) with 846 SINETs. Immunohistochemistry (IHC) was used to quantify protein expression in TMA samples and this was correlated with chromosome number evaluated with fluorescent in-situ hybridization (FISH). Intestinal tissue from a Smad4+/- mouse model was used to detect entero-endocrine cell hyperplasia with IHC.ResultsAnalyzing the CGH arrays we found loss of chromosome 18q and SMAD4 in 71% of SINETs and that focal loss of chromosome 12 affecting the CDKN1B was present in 9.4% of SINETs. No homozygous loss of chromosome 18 was detected. Hemizygous loss of SMAD4, but not CDKN1B, significantly correlated with reduced protein levels but hemizygous loss of SMAD4 did not induce entero-endocrine cell hyperplasia in the Smad4+/- mouse model. In addition, patients with low SMAD4 protein expression in primary tumors more often presented with metastatic disease.ConclusionsHemizygous loss of chromosome 18q and the SMAD4 gene is the most common genetic event in SINETs and our results suggests that this could influence SMAD4 protein expression and spread of metastases. Although SMAD4 haploinsufficiency alone did not induce tumor initiation, loss of chromosome 18 could represent an evolutionary advantage in SINETs explaining the high prevalence of this aberration. Functional consequences of reduced SMAD4 protein levels could hypothetically be a potential mechanism as to why loss of chromosome 18 appears to be clonally selected in SINETs.
Project description:Assessment of mesenteric fibrosis (MF) presence and severity in small-intestinal neuroendocrine tumors (SI-NETs) remains a diagnostic challenge. To explore possible biomarkers for MF presence, a proteomic analysis was performed of the tumor and stroma compartment of primary SI-NETs and paired mesenteric metastasis.
Project description:The goal of this study was to gain insights into the transcriptomes, mutations and copy number variants present in small intestinal neuroendocrine tumors. The present dataset contains RNA-sequencing performed on seven such tumors.
Project description:The tumorigenesis of small intestinal neuroendocrine tumors (NETs) is poorly understood. Recent studies have associated alternative polyadenylation with proliferation, cell transformation and cancer. Polyadenylation is the process in which the pre-mRNA is cleaved at a polyA site and a polyA tail is added. Genes with two or more polyA sites can undergo alternative polyadenylation. This produces two or more distinct mRNA isoforms with different 3M-bM-^@M-^Y untranslated regions. Additionally, alternative polyadenylation can also produce mRNAs containing different 3M-bM-^@M-^Y-terminal coding regions. Therefore, alternative polyadenylation alters both the repertoire and the expression level of proteins. Here we used high-throughput sequencing data to map polyA sites and characterize polyadenylation genome-wide in three small intestinal neuroendocrine tumors and a reference sample. In the tumors sixteen genes showed significant changes of alternative polyadenylation pattern, which lead to either the 3M-bM-^@M-^Y truncation of mRNA coding regions or 3M-bM-^@M-^Y untranslated regions. Among these, 11 genes had been previously associated with cancer, with 4 genes being known tumor suppressors: DCC, PDZD2, MAGI1 and DACT2. We validated the alternative polyadenylation in 3 out of 3 cases with Q-RT-PCR. Our findings suggest that changes of alternative polyadenylation pattern in these 16 genes could be involved in the tumorigenesis of small intestinal neuroendocrine tumors. Furthermore, they also point to alternative polyadenylation as a new target for both diagnostic and treatment of small intestinal neuroendocrine tumors. The identified genes with alternative polyadenylation specific to the small intestinal neuroendocrine tumors could be further tested as diagnostic markers and drug targets for disease prevention and treatment. PolyA-seq profiling of 3 human neuroendocrine tumors compared and pituitary using Direct RNA Sequencing from Helicos Biosciences Technology
Project description:The tumorigenesis of small intestinal neuroendocrine tumors (NETs) is poorly understood. Recent studies have associated alternative polyadenylation with proliferation, cell transformation and cancer. Polyadenylation is the process in which the pre-mRNA is cleaved at a polyA site and a polyA tail is added. Genes with two or more polyA sites can undergo alternative polyadenylation. This produces two or more distinct mRNA isoforms with different 3’ untranslated regions. Additionally, alternative polyadenylation can also produce mRNAs containing different 3’-terminal coding regions. Therefore, alternative polyadenylation alters both the repertoire and the expression level of proteins. Here we used high-throughput sequencing data to map polyA sites and characterize polyadenylation genome-wide in three small intestinal neuroendocrine tumors and a reference sample. In the tumors sixteen genes showed significant changes of alternative polyadenylation pattern, which lead to either the 3’ truncation of mRNA coding regions or 3’ untranslated regions. Among these, 11 genes had been previously associated with cancer, with 4 genes being known tumor suppressors: DCC, PDZD2, MAGI1 and DACT2. We validated the alternative polyadenylation in 3 out of 3 cases with Q-RT-PCR. Our findings suggest that changes of alternative polyadenylation pattern in these 16 genes could be involved in the tumorigenesis of small intestinal neuroendocrine tumors. Furthermore, they also point to alternative polyadenylation as a new target for both diagnostic and treatment of small intestinal neuroendocrine tumors. The identified genes with alternative polyadenylation specific to the small intestinal neuroendocrine tumors could be further tested as diagnostic markers and drug targets for disease prevention and treatment.
Project description:Purpose: The primary origin of neuroendocrine tumor metastases can be difficult to determine by histopathology alone, but is critical for therapeutic decision making. DNA methylation-based profiling is now routinely used in the diagnostic workup of brain tumors. This has been enabled by the availability of cost-efficient array-based platforms. We have extended these efforts to augment histopathological diagnosis in neuroendocrine tumors.
Experimental Design and Results: We compiled data of 69 small-intestinal, pulmonary, and pancreatic neuroendocrine tumors. These data were used to build a ridge regression calibrated random forest classification algorithm (NEN-ID) that predicts the origin of tumor samples with high accuracy (> 95%). The model was validated during 3x3 nested cross validation and tested in a local (n=26) and external (n=172) cohort. In addition, we show that our diagnostic approach is robust across a range of possible confounding experimental parameters such as tumor purity and array quality. A software infrastructure and online user interface was built to make the model available to the scientific community.
Conclusions: This DNA methylation-based prediction model can be used in the workup for patients with neuroendocrine tumors of unknown primary. To facilitate validation and clinical implementation, we provide a user-friendly, publicly available web-based version of NEN-ID.
Project description:Small intestine neuroendocrine tumors are the commonest neuroendocrine tumors of the GI tract. Next gen sequencing of the whole exome was undertaken to identify SNPs and SCNA in these tumor samples. Subsequent bioinformatic anlaysis was done where the reads ratios of tumor/normal were log2 tranformed, segments indentified with DNAcopy (R package) and regions of SCNA were identified. Amplification of chr 4, 5, 14 and 20 was observed. The validation of these SCNAs was done with arrayCGH. The results of array CGH is in concordeance with the exome sequencing data. DNA from matched tumor and normal sample of SI-NETs was done by spin column method. Libraries were constructed and exome enriched for next gen sequencing. The same gDNA was hybridized with Cy5 and Cy3 and subsequent analysis was done. This study represents the CGH portion of the study.