Project description:Mangrove Kandelia obovata, an important coastal shelterbelt and landscape tree, is distributed in tropical and subtropical shores and likely delimited in the latitudinal range by varying sensitivity to cold. Here, we explored the temporal variations in physiological status and transcriptome profiling of K. obovata under natural frost conditions at ~32oN, as well as the positive role of exogenous abscisic acid (ABA) in cold resistance.
Project description:We used high-throughput sequencing to identify conserved and nonconserved miRNAs and other short RNAs in Paeonia ostii under control and copper stressed condition. 102 previously known plant miRNAs were identified and classified into 89 families according to their gene sequence identity. Some miRNAs were highly conserved in the plant kingdom suggesting that these miRNA play important and conserved roles. Combined our transcriptome sequencing data of Paeonia ostii under same conditions, 34 novel potential miRNAs were identified. The potential targets of the identified known and novel miRNAs were also predicted based on sequence homology search. Comparing the two libraries, it was observed that 12 conserved miRNAs and 18 novel miRNAs showed significantly changes in response to copper stress. Some of the new identified potential miRNAs might be involved in Paeonia ostii-specific regulating mechanisms under copper stress. These results provide a framework for further analysis of miRNAs and their role in regulating Paeonia ostii response to copper stress.