Project description:Cationic antimicrobial peptides (CAPs) are promising novel alternatives to conventional antibacterial agents, but the overlap in resistance mechanisms between small-molecule antibiotics and CAPs is unknown. Does evolution of antibiotic resistance decrease (cross-resistance) or increase (collateral sensitivity) susceptibility to CAPs? We systematically addressed this issue by studying the susceptibilities of a comprehensive set of antibiotic resistant Escherichia coli strains towards 24 antimicrobial peptides. Strikingly, antibiotic resistant bacteria frequently showed collateral sensitivity to CAPs, while cross-resistance was relatively rare. We identified clinically relevant multidrug resistance mutations that simultaneously elevate susceptibility to certain CAPs. Transcriptome and chemogenomic analysis revealed that such mutations frequently alter the lipopolysaccharide composition of the outer cell membrane and thereby increase the killing efficiency of membrane-interacting antimicrobial peptides. Furthermore, we identified CAP-antibiotic combinations that rescue the activity of existing antibiotics and slow down the evolution of resistance to antibiotics. Our work provides a proof of principle for the development of peptide based antibiotic adjuvants that enhance antibiotic action and block evolution of resistance.
Project description:Antibiotic resistance is currently considered as a global threat to public health. It was shown that adaptive resistance mutation and acquisition of resistance genes by horizontal gene transfer are facilitated by RecA-dependent SOS response during antibiotic treatment. In this study, we performed high-throughput determination of minimal inhibitory concentrations (MICs) of 214 chemicals including not only various kinds of antibiotics but also toxic chemicals of unknown drug action in Escherichia coli wild-type MDS42 strain and the ΔrecA mutant strain. The ΔrecA mutant showed increased sensitivity to DNA-damaging agents, DNA replication inhibitors, and chromate stress. The ΔrecA mutant also showed increased sensitivity to chemicals other than DNA-damaging agents such as S-(2-aminoethyl)- l-cysteine, l-histidine, ruthenium red, D-penicillamine, carbonyl cyanide 3-chlorophenylhydrazone (CCCP), cerulenin, and l-cysteine. Microarray analysis showed that expressions of glnK, nac, and glnLG encoding nitrogen assimilation regulators together with amtB encoding ammonium transporter decreased in the ΔrecA mutant strain. These results suggest that ΔrecA mutation affect not only SOS response but also nitrogen assimilation.
Project description:Horizontal gene transfer (HGT) is the major mechanism responsible for spread of antibiotic resistance. Antibiotic treatment has been suggested to promote HGT, either by directly affecting the conjugation process itself or by selecting for conjugations subsequent to DNA transfer. However, recent research suggests that the effect of antibiotic treatment on plasmid conjugation frequencies, and hence the spread of resistance plasmids, may have been overestimated. We addressed the question by quantifying transfer proteins and conjugation frequencies of a blaCTX-M-1 encoding IncI1 resistance plasmid in Escherichia coli MG1655 in the presence and absence of therapeutically relevant concentrations of cefotaxime (CTX). Analysis of the proteome by iTRAQ labeling and liquid chromatography tandem mass spectrometry revealed that Tra proteins were significantly up regulated in the presence of CTX. The up-regulation of the transfer machinery was confirmed at the transcriptional level for five selected genes. The CTX treatment did not cause induction of the SOS39 response as revealed by absence of significantly regulated SOS associated proteins in the proteome and no significant up-regulation of recA and sfiA genes. The frequency of plasmid conjugation, measured in an antibiotic free environment, increased significantly when the donor was pre-grown in broth containing CTX compared to growth without this drug, regardless of whether blaCTX-M-1 was located on the plasmid or in trans on the chromosome. The results shows that antibiotic treatment can affect expression of a plasmid conjugation machinery and subsequent DNA transfer.
Project description:The rise of antimicrobial resistant pathogens calls for new antibacterial treatments, but potent new compounds are scarce. Development of new antibiotics is difficult, especially against Gram-negative bacteria, as here uptake is strongly hindered by the additional outer membrane. Most antimicrobial agents against Gram-negatives use the porin mediated pathway to cross the outer membrane, which limits the choice of an antibiotic, as it has to fit by size, charge and hydrophilicity. In E. coli, the major porins OmpF and OmpC are associated with antibiotic translocation and therefore also with unspecific antibiotic cross-resistance. In this regard, alternative uptake routes are of interest. We were interested in the uptake opportunities of the small, natural product antibiotic negamycin and thereby found new uptake pathways across the outer membrane of E. coli. Besides OmpF and OmpC, we investigated the role of the minor porins OmpN and ChiP in negamycin translocation. We detected an effect of OmpN and ChiP on negamycin susceptibility and confirmed passage by electrophysiological assays. The structure of OmpN was resolved in order to analyze the negamycin translocation mechanism by computational simulations. As abundancy of these minor porins was low in E. coli, their transcript levels were analyzed by RNA-Seq. Increased transcripts levels of ompN and chiP were observed upon negamycin treatment, hinting at a role in antibiotic uptake. These new, additional uptake pathways across the outer membrane of E. coli highlight the antibiotic potential of negamycin, especially as resistance development is low due to availability of multiple uptake routes at both the outer and inner membranes
Project description:We employed a genome-wide microarray approach to obtain a profile of the transcriptional events in ciprofloxacin-treated EPEC shedding light on how ciprofloxacin affects EPEC transcriptional events and growth, aside from resistance mechanisms, and how this bacterium tolerates antibiotic stress.