Project description:Synonymous single nucleotide polymorphisms (sSNPs), which change a nucleotide, but not the encoded amino acid, are perceived as neutral to protein function and thus, classified as benign. We report a patient who was diagnosed with cystic fibrosis (CF) at an advanced age and presented very mild CF symptoms. The sequencing of the whole cystic fibrosis transmembrane conductance regulator (CFTR) gene locus revealed that the patient lacks known CF-causing mutations. We found a homozygous sSNP (c.1584G>A) at the end of exon 11 in the CFTR gene. Using sensitive molecular methods, we report that the c.1584G>A sSNP causes cognate exon skipping and retention of a sequence from the downstream intron, both of which, however, occur at a relatively low frequency. In addition, we found two other sSNPs (c.2562T>G (p.Thr854=) and c.4389G>A (p.Gln1463=)), for which the patient is also homozygous. These two sSNPs stabilize the CFTR protein expression, compensating, at least in part, for the c.1584G>A-triggered inefficient splicing. Our data highlight the importance of considering sSNPs when assessing the effect(s) of complex CFTR alleles. sSNPs may epistatically modulate mRNA and protein expression levels and consequently influence disease phenotype and progression.
Project description:Synonymous single nucleotide polymorphisms (sSNPs), which change a nucleotide, but not the encoded amino acid, are perceived as neutral to protein function and thus, classified as benign. We report a patient who was diagnosed with cystic fibrosis (CF) at an advanced age and presented very mild CF symptoms. The sequencing of the whole cystic fibrosis transmembrane conductance regulator (CFTR) gene locus revealed that the patient lacks known CF-causing mutations. We found a homozygous sSNP (c.1584G>A) at the end of exon 11 in the CFTR gene. Using sensitive molecular methods, we report that the c.1584G>A sSNP causes cognate exon skipping and retention of a sequence from the downstream intron, both of which, however, occur at a relatively low frequency. In addition, we found two other sSNPs (c.2562T>G (p.Thr854=) and c.4389G>A (p.Gln1463=)), for which the patient is also homozygous. These two sSNPs stabilize the CFTR protein expression, compensating, at least in part, for the c.1584G>A-triggered inefficient splicing. Our data highlight the importance of considering sSNPs when assessing the effect(s) of complex CFTR alleles. sSNPs may epistatically modulate mRNA and protein expression levels and consequently influence disease phenotype and progression.
Project description:Skeletal muscle biopsies from atypical diabetics at presentation and remission. Protein expression determined with antibody arrays Keywords: other
Project description:Synonymous mutations do not change the sequence of the polypeptide but they may still influence fitness. We investigated in Salmonella enterica how four synonymous mutations in the rpsT gene (encoding ribosomal protein S20) reduce fitness (i.e. growth rate) and the mechanisms by which this cost can be genetically compensated. The reduced growth rates of the synonymous mutants were correlated with reduced levels of the rpsT transcript and S20 protein. In an adaptive evolution experiment these fitness impairments could be compensated by mutations that either caused up-regulation of S20 through increased gene dosage (due to duplications), increased transcription of the rpsT gene (due to an rpoD mutation or mutations in rpsT), or increased translation from the rpsT transcript (due to rpsT mutations). We suggest that the reduced levels of S20 in the synonymous mutants result in production of a defective subpopulation of 30S subunits lacking S20 that reduce protein synthesis and bacterial growth and that the compensatory mutations restore S20 levels and the number of functional ribosomes. Our results demonstrate how specific synonymous mutations can cause substantial fitness reductions and that many different types intra- and extragenic compensatory mutations can efficiently restore fitness. Furthermore, our study highlights that also synonymous sites can be under strong selection, which may have implications for the use of dN/dS ratios as signature for selection.
Project description:Nucleotide polymorphisms can potentially influence the hybridization of mRNA to 25-mer oligonucleotides. Because Affymetrix Rice Genome Array was designated mainly for Nipponbare genome of Oryza sativa, the expression level of other varieties could not be estimated correctly. We tried to apply new approaches to estimate expression level by discerning the probe-level differential hybridization.
Project description:We developed a novel approach combining next generation sequencing, bioinformatics and mass spectrometry to assess the impact of non-MHC polymorphisms on the repertoire of MHC I-associated peptides (MIPs). We compared the genomic landscape of MIPs eluted from B lymphoblasts of two MHC-identical siblings and determined that MIPs mirror the genomic frequency of non-synonymous polymorphisms but they behave as recessive traits at the surface level. Moreover, we showed that 11.7% of the MIP coding exome is polymorphic at the population level. Our method provides fundamental insights into the relation between the genomic self and the immune self and accelerates the discovery of polymorphic MIPs (also known as minor histocompatibility antigens), which play a major role in allo-immune responses.
Project description:We developed a novel approach combining next generation sequencing, bioinformatics and mass spectrometry to assess the impact of non-MHC polymorphisms on the repertoire of MHC I-associated peptides (MIPs). We compared the genomic landscape of MIPs eluted from B lymphoblasts of two MHC-identical siblings and determined that MIPs mirror the genomic frequency of non-synonymous polymorphisms but they behave as recessive traits at the surface level. Moreover, we showed that 11.7% of the MIP coding exome is polymorphic at the population level. Our method provides fundamental insights into the relation between the genomic self and the immune self and accelerates the discovery of polymorphic MIPs (also known as minor histocompatibility antigens), which play a major role in allo-immune responses. RNA-seq of human B lymphoblasts derived from peripheral blood mononuclear cells from 2 HLA-identical female siblings.