Project description:Molecular characterization of leaf development has not been well studied in soybean. Studies have shown that genomic regions controlling multifoliate leaf morphology in Glycine max also regulates important agronomic characters including yield, seed weight, seed number, shattering, plant growth, and flowering. Two soybean isolines that differed in leaf phenotype were profiled by high throughput RNA and small RNA (sRNA) sequencing. A Clark isoline, homozygous for a dominant mutant allele, Lf1, that specifies a five-foliate compound leaf was compared to wild type Clark that is homozygous for the standard allele that produces trifoliate leaves. Although Lf1 is dominant, it presents variable expressivity as the young plantlets with the Lf1Lf1 genotype initially have trifoliate leaves in the first few weeks, after which they transition to five-foliate leaves. At later developmental stages, they begin to produce four-foliate or trifoliate leaves. In RNA-Seq experiments, a total of 91 and 95 million reads were generated in each lane of Illumina sequencing for the shoot tip of wild type Clark standard (CS) and mutant Clark five-foliate (CF) libraries, respectively. Of these, ~70% million reads aligned to the 78,743 target Glyma models from the reference soybean genome (cv. Williams 82) with maximum of 3 mismatches and up to 25 alignments. Where as in vegetative bud, 56 (CS) to 59 (CF) million reads were produced and of these ~80% aligned to the soybean reference genome. The comparative studies of the transcript profiles of the wild-type versus mutant line revealed a number of differentially expressed genes. A total of 1,296 and 2,083 genes were up-regulated in the shoot tip of CS and CF, respectively that showed ≥2-fold expression difference. On the contrary in the vegetative bud, much smaller number of genes 14 (CS) and 94 (CF) showed increased transcript abundance. In sRNA analysis, a collection of 200,447 and 268,508 unique sRNA sequences isolated from shoot tip tissue of CS and CF were aligned to the soybean reference genome and their target glyma models were predicted using bioinformatics. This sRNA analysis at genome level reveals differences in size distribution of classes in the CS and CF. This study provides insight into the initial understanding of leaf development in soybean by revealing a number of genes and sRNAs differentially expressed between the CS and CF.
Project description:Two soybean isolines that differed in leaf phenotype were profiled by high throughput RNA and small RNA (sRNA) sequencing. A Clark isoline abbreviated as CF and homozygous for a dominant mutant allele, Lf1, that specifies a five-foliate compound leaf was compared to wild type Clark, designated CS, which is homozygous for the standard allele that produces trifoliate leaves. Although Lf1 is dominant, it presents variable expressivity as the young plantlets with the Lf1Lf1 genotype initially have trifoliate leaves in the first few weeks, after which they transition to five-foliate leaves. This study provides insight into the initial understanding of leaf development in soybean by revealing a number of small RNAs differentially expressed between the CS and CF. Out of over 200,000 unique sequences, 913 showed similarities to 122 known miRNAs in soybean.
2024-12-16 | GSE41199 | GEO
Project description:Glycine max genome resequencing of UC131, i (wild) black seed isoline in Clark
| PRJNA505196 | ENA
Project description:Glycine max (Clark 63) genome resequencing
| PRJNA503477 | ENA
Project description:Glycine max genome resequencing of a Harosoy isoline with defective seed coat trait (PI 691660, L67-2246, UC508)