Project description:Transcriptional profiling of CD133+/high vs CD133-/low cell populations of Caco2, HT-29 and HUH7 cell lines. Further in silico analysis of differentially expressed transcripts and proteins in CD133+/high vs CD133-/low cell populations revealed several potential key molecular regulators of CD133. In silico data was proved by CRISPR/CAS9 gene editing system.
Project description:To understand the gene expression profiling of cancer stem cells of laryngeal squamous carcinoma, the total RNA of CD133+CD44+ laryngeal cancer stem cells (isolated from LSCC cell line TU-177, named TDP), CD133-CD44- cells (TDN) and parental TU-177 (unsorted TU-177 cells, named TPT) was extracted, followed by RNA sequencing. Differentially expression of lncRNA, mRNA, and circRNA was identified.
Project description:The mouse prostate tissue exhibits strong power of regeneration, indicating the exisistence of prostate stem cells. Previously we showed that a single mouse prostate cells defined by Lin-CD44+CD133+Sca-1+CD117+ phenotype can generate a prostate after transplantation in vivo. In this study, we compared gene expression profiles of mouse prostate stem cells ( Lin-CD44+CD133+Sca-1+CD117+) and prostate non-stem cells (Lin-CD44-CD133-Sca-1-CD117-).
Project description:To identify the gene expression signature associated with CD133, the well-known stem cell markers, three gastric cancer cell lines were obtained (KATO-III, SNU201 and SNU601). Cultured gastric cancer celllines were sorted into CD133+ and CD133- population by FACS sorting and microarray-based gene expression profiling was performed.
Project description:Cancer stem cells (CSCs) that display tumor-initiating properties have recently been identified. We herein identify and characterize CSCs in human uterine carcinosarcoma, a highly aggressive and therapy-resistant gynecologic malignancy, which is considered to be of mesodermal origin. FU-MMT-1, a cell-line, which was established by us (Emoto M, Cancer 1992) from a patient with uterine carcinosarcoma, was evaluated. FU-MMT-1 contained a high population of CD133, CD44, CD90, and CD29 positive cells. Using the magnetic bead cell separation method, we isolated CD133+ cells, which predominantly form spheres in culture. These CD133+ cells form transplantable tumors in vivo. A qRT-PCR analysis of the genes implicated in stem cell maintenance revealed that CD133+ cells express significantly higher levels of OCT4, NANOG, and BMI-1 than CD133M-oM-<M- cells. Moreover, CD133+ cells showed a high expression of PAX2 and WNT4, which are the essential genes in Mullerian duct formation. The tumor derived from CD133+ cells replicated vimentin, ERM-NM-1, ERM-NM-2, and PR expressionsM-cM-^@M-^@of the parent tumor. These findings suggest that CD133+ FU-MMT-1 cells have the characteristics of CSCs and Mullerian mesenchymal progenitors. CD133+ and CD133- population of FU-MMT-1 cells were analyzed by microarray.
Project description:To demonstrate CD133+CD44+ and CD133+CD44- subpopulations of hepatocellular carcinoma as distinct subgroups, we have employed whole genome microarray expression profiling as a discovery platform to reveal the gene profiles of different subgroups and identify genes responsible for the enhanced metastatic potentials of CD133+CD44+ tumor cells. CD133+CD44+ and CD133+CD44- tumor cells were isolated from three human metastatic hepatocellular carcinoma specimens. A 76-gene consensus signature was identified that distinguished between CD133+CD44+ and CD133+CD44- subgroups. CD133+CD44+ and CD133+CD44- subgroups from different patients were well clustered as two distinct classes according to this signature, and many genes in this signature were reported involved in tumor metastasis. Expression of four genes (CCL4, DKK3, CCR5 and MMP12) from this signature was confirmed in another three metastatic HCC specimens by real-time PCR.
Project description:Cancer stem cells (CSCs) that display tumor-initiating properties have recently been identified. We herein identify and characterize CSCs in human uterine carcinosarcoma, a highly aggressive and therapy-resistant gynecologic malignancy, which is considered to be of mesodermal origin. FU-MMT-1, a cell-line, which was established by us (Emoto M, Cancer 1992) from a patient with uterine carcinosarcoma, was evaluated. FU-MMT-1 contained a high population of CD133, CD44, CD90, and CD29 positive cells. Using the magnetic bead cell separation method, we isolated CD133+ cells, which predominantly form spheres in culture. These CD133+ cells form transplantable tumors in vivo. A qRT-PCR analysis of the genes implicated in stem cell maintenance revealed that CD133+ cells express significantly higher levels of OCT4, NANOG, and BMI-1 than CD133- cells. Moreover, CD133+ cells showed a high expression of PAX2 and WNT4, which are the essential genes in Mullerian duct formation. The tumor derived from CD133+ cells replicated vimentin, ERα, ERβ, and PR expressions of the parent tumor. These findings suggest that CD133+ FU-MMT-1 cells have the characteristics of CSCs and Mullerian mesenchymal progenitors.
Project description:Background: Isolation and characterization of tumourigenic colon cancer initiating cells may help to develop novel diagnostic and therapeutic procedures. Methods: We characterized a panel of fourteen human colon carcinoma cell lines and their corresponding xenografts for the surface expression of different potential stem cell markers: CD133, CD24, CD44, CDCP1 and CXCR4. In five cell lines and nine xenografts mRNA expression of the investigated markers was determined. Tumour growth behaviour of CD133+, CD133- and unsorted SW620 cells was evaluated in vivo. Results: All surface markers showed distinct expression patterns in the examined tumours. Analyses of the corresponding xenografts revealed a significant reduction of cell numbers expressing the investigated markers. CD44 and CXCR4 mRNA expression correlated within the cell line panel and CD44 and CDCP1 within the xenograft panel, respectively. Small subpopulations of double and triple positive cells could be described. SW620 showed significantly higher take rates and shorter doubling times in vivo when sorted for CD133 positivity. Conclusion: Our data support the hypothesis of a small subset of cells with stem cell-like properties characterized by a distinct surface marker profile. In vivo growth kinetics give strong relevance for an important role of CD133 within the mentioned surface marker profile. Key words: colon cancer, tumour stem cell, CD133